Bees Can Learn the Difference Between European And Australian Indigenous Art Styles In A Single Afternoon

PHYS.ORG By Andrew Barron January 29, 2019

A painting titled The Bridge Over the Waterlily Pond by Claude Monet. Credit:  AAP/National Gallery of Victoria

A painting titled The Bridge Over the Waterlily Pond by Claude Monet. Credit: AAP/National Gallery of Victoria

We've known for a while that honey bees are smart cookies. They have excellent navigation skills, they communicate symbolically through dance, and they're the only insects that have been shown to learn abstract concepts.

Honey bees might also add the title of art connoisseur to their box of tricks. In part one of ABC Catalyst's The Great Australian Bee Challenge, we see honey bees learning to tell the difference between European and Australian Indigenous art in just one afternoon.

Does this mean honey bees are more cultured than we are?

Perhaps not, but the experiment certainly shows just how quickly honey bees can learn to process very complex information.

How the experiment worked

Bees were shown four different paintings by the French impressionist artist Claude Monet, and four paintings by Australian Indigenous artist Noŋgirrŋa Marawili.

At the centre of each of the paintings was placed a small blue dot. To make the difference between the artists meaningful to the honey bees, every time they landed on the blue dot on a Marawili painting they found a minute drop of sugar water. Every time they visited the blue dot on a Monet painting, however, they found a drop of dilute quinine. The quinine isn't harmful, but it does taste bitter.

Lightning in the Rock by Noŋgirrŋa Marawili won the Bark Painting Award at the 2015 Telstra National Aboriginal and Torres Strait Islander Art Award. Credit:  AAP/PR Handout Image

Lightning in the Rock by Noŋgirrŋa Marawili won the Bark Painting Award at the 2015 Telstra National Aboriginal and Torres Strait Islander Art Award. Credit: AAP/PR Handout Image

Having experienced each of the Monet and Marawili paintings the bees were given a test. They were shown paintings by the two artists that they had never seen before. Could they tell the difference between a Marawili and a Monet?

All the trained bees clearly directed their attention to the Marawili paintings.

This experiment was a recreation of a study first conducted by Dr. Judith Reinhard's team at the University of Queensland. In the original study, Reinhard was able to train bees to tell the difference between paintings by Monet and Picasso.

Bees are quick to learn

This kind of work does not show bees have a sense of artistic style, but it does show how good they are at learning and classifying visual information.

Different artists – be they Marawili, Monet or Picasso – tend to prefer different forms of composition and structure, different tones and different pallets in their art. We describe this as their distinctive style. These styles are recognisable to us, even if most of us would be hard pressed to describe exactly what makes a Marawili different from a Monet.

When the honey bees were trained on the paintings, every Monet they visited was a bitter experience, while every Marawili was sweet. This motivated the bees to learn whatever differences best distinguished the set of Marawili paintings from the set of Monets.

(NOTE: The video is currently unavailable.)

Bee colour vision is excellent, if different from ours. Bees can see ultraviolet wavelengths of light, but not red. Bees can pick up structure and edges in paintings by zipping quickly back and forth in front of them to detect abrupt changes in the brightness of an image.

In our experiment, bees could detect enough differences between the Marawili and Monet paintings to learn to tell them apart. The bees were not memorising the paintings; instead they were learning whatever information best distinguished a Monet from a Marawili. They could then maximise their collection of sugar, and avoid any bitter surprises.

Learning the visual differences between one set of Monet and Marawili paintings was enough for the bees to correctly choose between Monet and Marawili paintings they had never seen before.

Similarities between art and flowers

This experiment taps into a highly evolved honey bee skill. Bees did not evolve to differentiate between artists, but their survival depends on learning to tell which flowers are most likely to offer the best pollen and nectar they need to feed their hive.

Because of this, bees have evolved the ability to very quickly process complex and subtle visual information. These learning skills are on display when bees forage on flowers. Bees quickly learn to pick up on the subtlest distinction between fresh and older flowers, be it colour, odour or texture, which can betray the blooms that are most likely to contain a drop of nectar.

Honey bees break any stereotypes we may have that insects are dumb, instinct-driven animals. They have an intelligence that is very different from ours, but one that has evolved to be fit for the task of a bee doing what a bee has to do.

It is hard not to admire such clever and discriminating creatures.

Explore further: To bee an art critic, choosing between Picasso and Monet

Provided by: The Conversation

Read more at: https://phys.org/news/2019-01-bees-difference-european-australian-indigenous.html#jCp

Researchers Discover Honeybee Gynandromorph With Two Fathers And No Mother

Phys.org By Bob Yirka November 28, 2018

Credit CCO Public Domain

Credit CCO Public Domain

A team of researchers at the University of Sydney has discovered a honeybee gynandromorph with two fathers and no mother—the first ever of its kind observed in nature. In their paper published in the journal Biology Letters, the group describes their study of honeybee gynandromorphs and what they found.

Honeybees are haplodiploid creatures—which means that females develop from fertilized eggs, while males arise from eggs that are not fertilized. Because of this, honeybees are susceptible to producing gynandromorphs, creatures with both male and female tissue. This is different from hermaphrodites, which are one gender but have sex organs of both male and female. In this new effort, the researchers sought to learn more about the nature of gynandromorphs and what causes them.

Prior research has suggested the likelihood that rare mutations result in the creation of gynandromorphs. The mechanics of the process are due to multiple males mating with a queen, resulting in more than a single sperm fertilizing an egg. To learn more about the genetics involved, the researchers captured 11 gynandromorph honeybees, all from a single colony, and studied their genome.

The genetic makeup of the gynandromorphs revealed that five of them had normal ovaries, while three had ovaries that were similar to those of the queen. Also, one of them had normal male sex organs while two had only partial sex organs. The researchers also found that out of the 11 gynandromorphs tested, nine had either two or three fathers. And remarkably, one had two fathers but no mother—a development that could only have occurred through the development of sperm fusion.

The researchers note that gynandromorphs confer no known evolutionary advantage for a species; thus, their development must be due to mistakes resulting in still unknown mutations. They suggest that the large number of gynandromorphs in a single hive likely means the queen carries the mutation. They note that gynandromorphs have been observed in other species as well, including some crustaceans, other insects and a few bird species. The mutation that causes it in those other species has not been found, either.

Read more at: https://phys.org/news/2018-11-honeybee-gynandromorph-fathers-mother.html#jCp

All the Buzz About Bees - Talking Points Featuring Bill Lewis of Bill's Bees

Bill Lewis, President/Owner of Bill’s Bees and former president of the California State Beekeepers Association and the Los Angeles County Beekeepers Association, shares some of his experiences with bees over the last 30-some years.

"It's not something everybody does." ~Bill Lewis

In this fascinating overview, Bill talks about honey bee activity, hive behavior, bee colony collapse, habitat loss, crop pollination, and honey production. 

Bill Lewis Talking Points.jpg


Take a peek at the amazing life that goes on inside a beehive: how bees communicate, get along inside a hive, and who makes the decisions. Learn how bees collect nectar and pollen and bring it back to the hive to make honey, how honey is harvested and preserved. 

When asked about the best ways to behave around bees, Bill's reply:

"Pretend they're not there." 

Beach TV/CSULB Host: David Kelly
California State University/Long Beach

Bill's Bees