Honey Bee Parasites Feed on Fatty Organs, Not Blood

Phys.org University of Maryland January 14, 2019

In this electron micrograph, a parasitic mite,  Varroa destructor , is wedged between the abdominal plates of a honey bee's exoskeleton. Credit: UMD/USDA/PNAS

In this electron micrograph, a parasitic mite, Varroa destructor, is wedged between the abdominal plates of a honey bee's exoskeleton. Credit: UMD/USDA/PNAS

Honey bee colonies around the world are at risk from a variety of threats, including pesticides, diseases, poor nutrition and habitat loss. Recent research suggests that one threat stands well above the others: a parasitic mite, Varroa destructor, which specializes in attacking honey bees.

For decades, researchers have assumed that varroa mites feed on blood, like many of their mite and tick cousins. But new University of Maryland-led research suggests that varroa mites instead have a voracious appetite for a honey bee organ called the fat body, which serves many of the same vital functions carried out by the human liver, while also storing food and contributing to bees' immune systems.

The research, published in the Proceedings of the National Academy of Sciences on January 14, 2019, could transform researchers' understanding of the primary threats to honey bees while pointing the way toward more effective mite treatments in the future.

"Bee researchers often refer to three Ps: parasites, pesticides and poor nutrition. Many studies have shown that varroa is the biggest issue. But when compromised by varroa, colonies are also more susceptible to the other two," said UMD alumnus Samuel Ramsey (Ph.D. '18, entomology), the lead author of the paper. "Now that we know that the fat body is varroa's target, this connection is now much more obvious. Losing fat body tissue impairs a bee's ability to detoxify pesticides and robs them of vital food stores. The fat body is absolutely essential to honey bee survival."

In addition to breaking down toxins and storing nutrients, honey bee fat bodies produce antioxidants and help to manage the immune system. The fatty organs also play an important role in the process of metamorphosis, regulating the timing and activity of key hormones. Fat bodies also produce the wax that covers parts of bees' exoskeletons, keeping water in and diseases out.

According to Ramsey, the assumption that varroa mites consume honey bee blood (more accurately called hemolymph in insects) has persisted since the first paper on the topic was published in the 1960s. Because this paper was written in Russian, Ramsey said, many researchers opted to cite the first English-language papers that cited the original study.

In this cross-section of a honey bee's abdomen, a parasitic varroa mite (orange) can be seen lodged between the bee's abdominal plates, where the mite feeds on honey bee fat body tissue. Credit: UMD/USDA/PNAS

In this cross-section of a honey bee's abdomen, a parasitic varroa mite (orange) can be seen lodged between the bee's abdominal plates, where the mite feeds on honey bee fat body tissue. Credit: UMD/USDA/PNAS

"The initial work was only sufficient to show the total volume of a meal consumed by a mite," Ramsey added. "It can be a lot easier to cite a recent summary instead of the original work. Had the first paper been read more widely, many folks might have questioned these assumptions sooner."

Ramsey noted several observations that led him to question whether varroa mites were feeding on something other than hemolymph. First, insect hemolymph is very low in nutrients. To grow and reproduce at the rates they do, varroa mites would need to consume far more hemolymph than they would be able to acquire from a single bee.

Second, varroa mites' excrement is very dry—contrary to what one would expect from an entirely liquid blood diet. Lastly, varroa mites' mouthparts appear to be adapted for digesting soft tissues with enzymes then consuming the resulting mush. By contrast, blood-feeding mites have very different mouthparts, specifically adapted for piercing membranes and sucking fluid.

The first and most straightforward experiment Ramsey and his collaborators performed was to observe where on the bees' bodies the varroa mites tended to attach themselves for feeding. If the mites grabbed on to random locations, Ramsey reasoned, that would suggest that they were in fact feeding on hemolymph, which is distributed evenly throughout the body. On the other hand, if they had a preferred site on the body, that could provide an important clue to their preferred meal.

"When they feed on immature bees, mites will eat anywhere. But in adult bees, we found a very strong preference for the underside of the bees' abdomen," Ramsey said. "More than 90 percent of mites we found on adults fed there. As it happens, fat body tissue is spread throughout the bodies of immature bees. As the bees mature, the tissue migrates to the underside of the abdomen. The connection was hard to ignore, but we needed more evidence."

Ramsey and his team then directly imaged the wound sites where varroa mites gnawed on the bees' abdomens. Using a technique called freeze fracturing, the researchers used liquid nitrogen to freeze the mites and their bee hosts, essentially taking a physical "snapshot" of the mites' feeding habits in action. Using powerful scanning electron microscopes to visualize the wound sites, Ramsey saw clear evidence that the mites were feeding on fat body tissue.

This microscopic image shows a varroa mite that has consumed honey bee fat body tissue tagged with Nile red, a fat-soluble fluorescent dye. Observing this red fluorescence in the mites' digestive systems helped researchers determine that varroa mites feed on honey bee fat body tissue--not blood, as previously assumed. Credit: UMD/USDA/ PNAS

This microscopic image shows a varroa mite that has consumed honey bee fat body tissue tagged with Nile red, a fat-soluble fluorescent dye. Observing this red fluorescence in the mites' digestive systems helped researchers determine that varroa mites feed on honey bee fat body tissue--not blood, as previously assumed. Credit: UMD/USDA/PNAS

"The images gave us an excellent view into the wound sites and what the mites' mouthparts were doing," Ramsey said. "We could see digested pieces of fat body cells. The mites were turning the bees into 'cream of honey bee soup.' An organism the size of a bee's face is climbing on and eating an organ. It's scary stuff. But we couldn't yet verify that blood wasn't also being consumed."

To further shore up their case, Ramsey and his colleagues fed bees with one of two fluorescent dyes: uranine, a water-soluble dye that glows yellow, and Nile red, a fat-soluble dye that glows red. If the mites were consuming hemolymph, Ramsey expected to see a bright yellow glow in the mites' bellies after feeding. If they were feeding on fat bodies, on the other hand, Ramsey predicted a telltale red glow.

"When we saw the first mite's gut, it was glowing bright red like the sun. This was proof positive that the fat body was being consumed," Ramsey said. "We've been talking about these mites like they're vampires, but they're not. They're more like werewolves. We've been trying to drive a stake through them, but turns out we needed a silver bullet."

To drive the proverbial final nail into the coffin of the idea that mites feed on hemolymph, Ramsey performed one last experiment. First, he painstakingly perfected the ability to raise varroa mites on an artificial dietary regimen—hardly an easy task for a parasite that prefers meals from a live host. Then, he fed them diets composed of hemolymph or fat body tissue, with a few mixtures of the two for good measure.

The results were striking: mites fed a diet of pure hemolymph starved, while those fed fat body tissue thrived and even produced eggs.

"These results have the potential to revolutionize our understanding of the damage done to bees by mites," said Dennis vanEngelsdorp, a professor of entomology at UMD and a co-author of the study, who also served as Ramsey's advisor. "Fat bodies serve so many crucial functions for bees. It makes so much more sense now to see how the harm to individual bees plays out in the ways that we already know varroa does damage to honey bee colonies. Importantly, it also opens up so many new opportunities for more effective treatments and targeted approaches to control mites."

Read more at: https://phys.org/news/2019-01-honey-bee-parasites-fatty-blood.html#jCp

More information: Samuel D. Ramsey el al., "Varroa destructor feeds primarily on honey bee fat body tissue and not hemolymph," PNAS (2018). www.pnas.org/cgi/doi/10.1073/pnas.1818371116 

Journal reference: Proceedings of the National Academy of Sciences 

Provided by: University of Maryland

Students Create Probiotic To Help Honeybees Fight Deadly Fungus

Phys.org By Andrew Lyle, University of Alberta January 10, 2019

Credit: CC0 Public Domain

Credit: CC0 Public Domain

A team of University of Alberta students are hoping to market a probiotic they created to help honeybees ward off a fungal infection that has wiped out entire hives.

APIS, short for "antifungal porphyrin-based intervention system," uses genetically engineered E. coli bacteria to produce molecules called porphyrins that damage the spores of Nosema ceranae, the most widespread fungus infecting honeybees around the world.

Beekeepers can feed the product to their hives to help eliminate the fungus in the bees' digestive systems.

The students created the product as a project for the 2018 International Genetically Engineered Machine (iGEM) Competition that took place in Boston last October, where they won first prize and a gold medal in the food and nutrition category.

A month after the competition, the team presented their research at the annual conference of the Alberta Beekeeping Commission.

"It allowed us to expose our work to commercial beekeepers and to bee researchers who might be able to pursue further development," said science student and team member Julia Heaton. "We've had interest in our project from some of these beekeepers, as well as from beekeepers who saw our research in the media.

"We have commercial beekeepers who are willing to conduct the necessary field trials to allow commercialization of our project. We've also looked into patenting our system with the help of TEC Edmonton."

Honeybees in cold climates are even more vulnerable to the fungus that infects their digestive systems—a problem of particular concern in Alberta, which produced more than 40 per cent of Canada's honey in 2016, worth more than $60 million.

The only existing treatment for Nosema ceranae is a fungicide called fumagillin, but it has been discontinued, making the problem even more critical.

"Bees have been a really hot topic lately, but although a lot of people know that bees are in trouble, not a lot of people understand why," said Heaton.

"We also wanted to raise awareness of a problem that deeply affects our province and our communities, but not many people know about," added Anna Kim, a team member studying biology and psychology.

Under the supervision of mentors, more than 300 university teams are tasked with using genetic components to create biological solutions to real-world problems.

"Very often in science, we first find 'solutions' and then we go looking for a problem," said U of A chemistry professor Robert Campbell, who mentored the student team for the competition in which more than 300 university teams are tasked with using genetic components to create biological solutions to real-world problems.

"It is so important to identify a problem first and then find the best solution, no matter where that leads you. This team identified the problem of Nosema infections in honeybees and was inspired to conceive of an original, feasible and practical solution."

Read more at: https://phys.org/news/2019-01-students-probiotic-honeybees-deadly-fungus.html#jCp

Provided by: University of Alberta 

Propolis Power-Up: How Beekeepers Can Encourage Resin Deposits For Better Hive Health

Entomology Today By Andrew Porterfield

Propolis is a pliable, resinous mixture that honey bees (Apis mellifera) create by mixing a variety of plant resins, saliva, and beeswax and which they apply to interior surfaces of their hives, namely at points of comb attachment and to seal up cracks and crevices on the interior side of hive walls. Greater propolis production is connected with improved hive health, and a new study finds a few simple methods beekeepers can employ to stimulate increased propolis production. (Photo credit: Flickr/Ontario Beekeepers’ Association Tech Transfer Program, CC BY-NC-ND 2.0)

Propolis is a pliable, resinous mixture that honey bees (Apis mellifera) create by mixing a variety of plant resins, saliva, and beeswax and which they apply to interior surfaces of their hives, namely at points of comb attachment and to seal up cracks and crevices on the interior side of hive walls. Greater propolis production is connected with improved hive health, and a new study finds a few simple methods beekeepers can employ to stimulate increased propolis production. (Photo credit: Flickr/Ontario Beekeepers’ Association Tech Transfer Program, CC BY-NC-ND 2.0)

Propolis, a mass of plant resins built by honey bees inside their hives, has drawn attention in recent years partly because of its alleged (but as yet unproven) health benefits to humans. But, perhaps more important, it also shows health benefits to bees themselves. Created from resins and other oils and fats collected from trees, propolis helps preserve the structural integrity of a bee hive and protects against wood decay, fungus, and water.

Propolis has also been connected to benefiting honey bee (Apis mellifera) immune systems, saving energy that would otherwise have been used to protect against nest-invading beetles like Aethina tumidaor parasites like the Varroa destructor mite, Nosema fungus, and viruses. In the past, some beekeepers have tried to keep their hives “clean” of propolis, believing it impeded with honey-making activities. Today, though, scientists and beekeepers have begun looking at encouraging propolis production to help sustain healthy hives.

In a new study published today in the Journal of Economic Entomology, three researches—Cynthia Hodges, master beekeeper and co-owner of Hodges Honey Apiaries in Dunwoody, Georgia; Keith Delaplane, Ph.D., entomology professor at the University of Georgia; and Berry Brosi, Ph.D., associate professor of environmental science at Emory University in Atlanta—looked at four different ways to enhance propolis growth in bee hives. The team found that three surface modifications—plastic trap material on the hive wall interior, parallel saw cuts on hive wall interior, and brush-roughened wall interiors—were all equally capable of resulting in increased propolis production, compared to a fourth method, a control, in which the hive wall interiors we left unmodified.

The researchers divided 20 colonies into five apiary sites and randomly applied one of the three texture treatments or control to each colony. Bees in the colonies foraged for propolis resins from plants common to the Appalachian Piedmont in the southeastern U.S., including conifers, oaks, pecan, red maple, yellow poplar, and urban ornamental plants. The researchers then measured extensiveness and depth of propolis deposits in the hives over time.

Researchers in Georgia tested three different ways to texturize the interiors of honey bee (Apis mellifera) hive walls to stimulate production of propolis: at left, plastic propolis traps are attached to the walls; at center, walls are modified with five parallel saw kerfs, 7 centimeters apart, cut 3 millimeters deep into the surface; and, at right, walls are roughened with a mechanized wire brush. All three treatments stimulated increased propolis production over smooth, unmodified walls. (Left image originally published in Borba et al 2015, Journal of Experimental Biology; center and right images originally published in Hodges et al 2018, Journal of Economic Entomology)

Researchers in Georgia tested three different ways to texturize the interiors of honey bee (Apis mellifera) hive walls to stimulate production of propolis: at left, plastic propolis traps are attached to the walls; at center, walls are modified with five parallel saw kerfs, 7 centimeters apart, cut 3 millimeters deep into the surface; and, at right, walls are roughened with a mechanized wire brush. All three treatments stimulated increased propolis production over smooth, unmodified walls. (Left image originally published in Borba et al 2015, Journal of Experimental Biology; center and right images originally published in Hodges et al 2018, Journal of Economic Entomology)

Their results showed that any hive interior treatment significantly increased propolis deposition compared to a non-treatment control. Sampling over time showed propolis hoarding and accumulation, as well. None of the texture treatments showed significantly different results from each other.

While all treatments resulted in more propolis deposition, the researchers point to the roughened interior of the hive walls as the best method for encouraging deposition. In fact, leaving lumber naturally rough, with no planning or sanding, would provide a simple and effective surface for boosting propolis, they write.

“We come down in favor of roughened or un-planed wood,” says Delaplane, “because, unlike the plastic trap, it will not subtract from the bee space engineered around the walls and combs. What you see in our pictures is the work of a steel brush. Naturally un-planed wood would be much rougher and, I would expect, even better at stimulating propolis deposition.”

Other researchers have shown that propolis development has a strong effect on the members of the bee hive. These other investigations have shown that interior walls painted with propolis extract resulted in colonies with lower bacterial loads and with worker bees that expressed lower levels of immune gene expression. Sustained activation of immune genes comes at an energy cost, which can result in a reduction in brood numbers and pose a threat to overall colony health. Further studies have shown that reduced immune activation (and therefore less energy spent on fighting infection) comes from reduced pathogen loads in high-propolis colonies and not from immune suppression by propolis.

“I don’t know of any beekeepers deliberately encouraging their bees to collect propolis,” says Delaplane, adding that many keepers in the past have tried to clear propolis from their hives. “But today we know that this bias is misdirected. I believe encouraging propolis deposition is one more thing beekeepers can do to partner with biology instead of ignore it.”

https://entomologytoday.org/2018/11/28/propolis-how-beekeepers-encourage-better-hive-health/

Will Mushrooms Be Magic for Threatened Bees?

The New York Times / Opinion By Paul Stamets December 28, 2108

We might be able to save honeybees from viruses transmitted by invasive parasites without chemical treatment.

Credit: Lilli Carré

Credit: Lilli Carré

Sometime in the 1980s, microscopic mites that had been afflicting honeybees outside the United States found their way to Florida and Wisconsin and began wreaking havoc across the country. These parasites have invaded and decimated wild and domestic bee colonies. Along with other dangers facing bees, like pesticides and the loss of forage lands, the viruses these mites carry threaten the bees we rely on to pollinate many of the fruits, nuts and vegetables we eat.

This mite, Varroa destructor, injects a slew of viruses into bees, including one that causes shriveled wings, a primary factor in widespread colony collapse. Worse, these parasites have rapidly developed resistance to synthetic pesticides.

Beekeepers in the United States lost an estimated 40 percent of their colonies between April 2017 and April 2018. But we might be able to save honeybees at least from this parasitic scourge without chemical intervention. I along with scientists at Washington State University and the United States Department of Agriculture recently published in Scientific Reports, a journal from the publishers of Nature, a study that could inspire a paradigm shift in protecting bees.

Our research shows that extracts from the living mycelial tissue of common wood conk mushrooms known to have antiviral properties significantly reduced these viruses in honeybee colonies, in one field test by 45,000 times, compared to control colonies. In the field tests, we used extracts from two species of wood conks, the red reishi and the amadou. The famous “Iceman” found in a glacier in 1991 in the Alps carried amadouin a pouch 5,300 years ago. The red reishi has long been used as an immune-boosting tonic in Asia.

Our hypothesis — and that's all it is, we don't understand the mechanism behind the results — is that extracts of wood conk mushrooms strengthen immunity to viruses. More study is needed. At present, there have been no substances proved to reduce viruses in bees.

In the field study, a small amount of one of these mycelial extracts was added to the sugar water commonly fed to honeybees by beekeepers; wild bees could benefit too. I’m excited by the prospect of this research. I am a mycologist by trade — a mushroom expert — and I hope to create, with some colleagues, a nonprofit organization that could make available this mushroom extract and a bee feeder, similar to a hummingbird feeder, so that all of us can help save bees from our own backyards.

Our team is designing a bee feeder that we hope makes it possible to track bee visits and their pollen loads. Ideally, citizen scientists will upload their data to a portal to monitor progress. I estimate that millions of these feeders are needed to reverse the decline in bee populations.

Nature can repair itself with a little help from mycologists. Fungi outnumber plants by about 6 to 1; there are two million to four million fungal species, though only about 140,000 have been named so far. Our research underlines the need to save biodiversity for the discoveries to come.

These mycelial extracts might aid other species like pigs, birds and other animals. But we need more animal clinical studies to prove that this will work on a wider scale.

Mycology is an underfunded, understudied field with astonishing potential to save lives: ours and the bees.

Paul Stamets, a mycologist and owner of a gourmet mushroom company, is the author of “Mycelium Running: How Mushrooms Can Help Save the World.”

https://www.nytimes.com/2018/12/28/opinion/bees-threats-crop-loss-mushrooms.html

Genome Published of The Small Hive Beetle, A Major Honey Bee Parasite

Phys.org From the Department of Agriculture December 20, 2018

Small hive beetles in a honey bee colony. Credit: Agricultural Research Service-USDA

Small hive beetles in a honey bee colony. Credit: Agricultural Research Service-USDA

Beekeepers and researchers will welcome the unveiling of the small hive beetle's genome by Agricultural Research Service (ARS) scientists and their colleagues. The small hive beetle (SHB) is a major parasite problem of honey bees for which there are few effective treatments.

The SHB (Aethina tumida Murray) genome—a genome is the sum total of all an organism's DNA; a gene codes for a single protein to be built—is available at is available at https://www.ncbi.nlm.nih.gov/genome/annotation_euk/Aethina_tumida/100 and was recently published in GigaScience.

This information will provide crucial keys that should lead to better, more targeted SHB control methods, including insecticidal treatments and possibly even genetic/breeding solutions.

The SHB has a strong gene-guided system that lets the beetle detoxify many insecticides. Having the genome will allow researchers to gain a more precise understanding of these detoxification genes, so more effective choices for control treatments can be made.

"The big challenge is identifying control methods that will target SHBs but not harm honey bees," said geneticist Jay Evans, who ran the project and is also leader of the ARS Bee Research Laboratory. "One strategy is to look for insecticides that hit pathways in the genome where the SHB has few or no detoxification genes. It would be even better if an insecticide could be identified for which the honey bee has detoxification genes but that the SHB doesn't.

A native of sub-Saharan Africa, the SHB has spread to many other locations, including North America, Europe, Australia, and the Philippines. It was first found in the United States in 1996 and during the summer of 1998, the SHB was blamed for losses of more than 20,000 honey bee colonies in Florida alone.

Today, the SHB has spread throughout the United States. It is a major problem especially for queen breeders and honey production. SHBs eat everything and anything in a bee colony: pollen, brood, honey, dead adult bees and combs) and cause honey to ferment in the process. If the number of SHBs is high enough, adult bees will abscond from the hive.

One avenue to which the SHB genome has already pointed is where to look for clues for how the SHB finds beehives; what pheromones or other smells do SHBs follow to target honey bee colonies.

Although there are about 350,000 beetle species and subspecies, only seven beetle genomes, including the SHB, have been completed and published.

Completing the SHB genome takes on even more importance when you realize that among the SHB's close relatives are the destructive and invasive Asian longhorned beetle along with other sap beetles that are pests of sweet corn, tomatoes, strawberries and other fruit and vegetable crops.

The Agricultural Research Service is the U.S. Department of Agriculture's chief scientific in-house research agency. Daily, ARS focuses on solutions to agricultural problems affecting America. Each dollar invested in agricultural research results in $20 of economic impact.

Explore further: Study examines insecticide's effects on honey bees

Journal reference: GigaScience

Provided by: US Department of Agriculture

Read more at:https://phys.org/news/2018-12-genome-published-small-hive-beetle.html#jCp

The First-Ever Insect Vaccine Prime-BEE Helps Bees Stay Healthy

University of Helsinki By Elina Raukko October 31, 2018

Photo: Helsinki Innovation Services

Photo: Helsinki Innovation Services

The easily administered edible vaccine could keep pollinators safe from bacterial diseases and give invaluable support for food production worldwide.

Food and pollination services are important for everyone: humans, production animals and wildlife alike. Inventing something that guards against pollinator losses will have a tremendous impact.

PrimeBEE is the first-ever vaccine for honey bees and other pollinators. It fights severe microbial diseases that can be detrimental to pollinator communities. The invention is the fruit of research carried out by two scientists in the University of Helsinki, Dalial Freitak and Heli Salmela.

The basis of the innovation is quite simple. When the queen bee eats something with pathogens in it, the pathogen signature molecules are bound by vitellogenin. Vitellogenin then carries these signature molecules into the queen’s eggs, where they work as inducers for future immune responses.

Before this, no-one had thought that insect vaccination could be possible at all. That is because the insect immune system, although rather similar to the mammalian system, lacks one of the central mechanisms for immunological memory – antibodies.
"Now we've discovered the mechanism to show that you can actually vaccinate them. You can transfer a signal from one generation to another," researcher Dalial Freitak states.

From moths to honey bees

Dalial Freitak has been working with insects and the immune system throughout her career. Starting with moths, she noticed that if the parental generation is exposed to certain bacteria via their food, their offspring show elevated immune responses.

"So they could actually convey something by eating. I just didn't know what the mechanism was. At the time, as I started my post-doc work in Helsinki, I met with Heli Salmela, who was working on honeybees and a protein called vitellogenin. I heard her talk and I was like: OK, I could make a bet that it is your protein that takes my signal from one generation to another. We started to collaborate, got funding from the Academy of Finland, and that was actually the beginning of PrimeBEE," Dalial Freitak explains.

Fu­ture plans: vac­cin­at­ing honey bees against any mi­crobe

PrimeBEE's first aim is to develop a vaccine against American foulbrood, a bacterial disease caused by the spore-forming Paenibacillus larvae ssp. larvae. American foulbrood is the most widespread and destructive of the bee brood diseases.

"We hope that we can also develop a vaccination against other infections, such as European foulbrood and fungal diseases. We have already started initial tests. The plan is to be able to vaccinate against any microbe".

At the same time as the vaccine’s safety is being tested in the laboratory, the project is being accelerated towards launching a business. Sara Kangaspeska, Head of Innovation at Helsinki Innovation Services HIS, has been involved with the project right from the start.

"Commercialisation has been a target for the project from the beginning. It all started when Dalial and Heli contacted us. They first filed an invention disclosure to us describing the key findings of the research. They then met with us to discuss the case in detail and since then, the University has proceeded towards filing a patent application that reached the national phase in January 2018.”

A big step forward was to apply for dedicated commercialisation funding from Business Finland, a process which is coordinated and supported by HIS. HIS assigns a case owner for each innovation or commercialisation project, who guides the project from A to Z and works hands-on with the researcher team.

“HIS core activities are to identify and support commercialisation opportunities stemming from the University of Helsinki research. PrimeBEE is a great example of an innovation maturing towards a true commercial seed ready to be spun-out from the University soon. It has been inspiring and rewarding to work together with the researchers towards a common goal,” says Sara Kangaspeska.

The latest news is that based on the PrimeBEE invention, a spinout company called Dalan Animal Health will be founded in the very near future.

"We need to help honey bees, absolutely. Even improving their life a little would have a big effect on the global scale. Of course, the honeybees have many other problems as well: pesticides, habitat loss and so on, but diseases come hand in hand with these life-quality problems. If we can help honey bees to be healthier and if we can save even a small part of the bee population with this invention, I think we have done our good deed and saved the world a little bit," Dalial Freitak asserts.

Organismal and Evolutionary Biology Research Programme
Centre of Excellence in Biological Interactions

In short:

Honeybees are central for providing food for humans, production animals and wildlife by pollinating more than 80% of the plant species in the world. Recent years have witnessed a decline in pollinator numbers worldwide, threatening the food and fodder production. Among other reasons, emerging diseases are raging havoc in bee populations.

PrimeBEE is the first-ever insect vaccine, which is based on the trans-generational immune priming mechanism, allowing immunological signals to be passed from queen bees to her offspring. PrimeBEE insect vaccine is easily administered as it can be added to the queen bee's food. The queen then conveys the disease resistance to its progeny.

JOIN US: We are now looking for investors and funding to help save a little bit of the world! CON­TACT IN­FOR­MA­TION: Dr. Dalial Freitak, Dr. Annette Kleiser, and Dr. Franziska Dickel

PrimeBee website

https://www.helsinki.fi/en/news/sustainability-news/the-first-ever-insect-vaccine-primebee-helps-bees-stay-healthy

Stronger Pesticide Regulations Likely Needed To Protect All Bee Species, Say Studies

Wild bee Credit: Nigel Raine

Wild bee Credit: Nigel Raine

December 11, 2018, University of Guelph

Pesticide regulations designed to protect honeybees fail to account for potential health threats posed by agrochemicals to the full diversity of bee species that are even more important pollinators of food crops and other plants, say three new international papers co-authored by University of Guelph biologists.

As the global human population grows, and as pollinators continue to suffer declines caused by everything from habitat loss to pathogens, regulators need to widen pesticide risk assessments to protect not just honeybees but other species from bumblebees to solitary bees, said environmental sciences professor Nigel Raine, holder of the Rebanks Family Chair in Pollinator Conservation.

"There is evidence that our dependency on insect-pollinated crops is increasing and will continue to do so as the global population rises," said Raine, co-author of all three papers recently published in the journal Environmental Entomology.

With growing demands for crop pollination outstripping increases in honeybee stocks, he said, "Protecting wild pollinators is more important now than ever before. Honeybees alone simply cannot deliver the crop pollination services we need."

Government regulators worldwide currently use honeybees as the sole model species for assessing potential risks of pesticide exposure to insect pollinators.

But Raine said wild bees are probably more important for pollination of food crops than managed honeybees. Many of those wild species live in soil, but scientists lack information about exposure of adult or larval bees to pesticides through food or soil residues.

The papers call on regulators to look for additional models among solitary bees and bumblebees to better gauge health risks and improve protection for these species.

"Everybody is focused on honeybees," said Angela Gradish, a research associate in the School of Environmental Sciences and lead author of one paper, whose co-authors include Raine and SES Prof. Cynthia Scott-Dupree. "What about these other bees? There are a lot of unknowns about how bumblebees are exposed to pesticides in agricultural environments."

She said bumblebee queens have different life cycles than honeybee counterparts that may increase their contact with pesticides or residues while collecting food and establishing colonies.

"That's a critical difference because the loss of a single bumblebee queen translates into the loss of the colony that she would have produced. It's one queen, but it's a whole colony at risk."

Like honeybees, bumblebees forage on a wide variety of flowering plants. But because bumblebees are larger, they can carry more pollen from plant to plant. They also forage under lower light conditions and in cloudier, cooler weather that deter honeybees.

Those characteristics make bumblebees especially vital for southern Ontario's greenhouse growers.

"Greenhouse tomato producers rely on commercial bumblebee colonies as the only source of pollination for their crops," said Gradish.

The new studies stem from workshops held in early 2017 involving 40 bee researchers from universities and representatives of agrochemical industries and regulatory agencies in Canada, the United States and Europe, including Canada's Pest Management Regulatory Agency.

"I hope we can address shortfalls in the pesticide regulatory process," said Raine, who attended the international meeting held in Washington, D.C.

"Given the great variability that we see in the behaviour, ecology and life history of over 20,000 species of bees in the world, there are some routes of pesticide exposure that are not adequately considered in risk assessments focusing only on honeybees."

Read at: https://phys.org/news/2018-12-stronger-pesticide-bee-species.html#jCp

Explore further: Bee flower choices altered by exposure to pesticides

More information: Environmental Entomology (2018). DOI: 10.1093/ee/nvy103 , https://academic.oup.com/ee/advance-article/doi/10.1093/ee/nvy103/5216322 

Provided by: University of Guelph

How to Autopsy a Honey Bee Colony

Beverly Bees     By Anita Deeley

 Looking through a hive that died for clues.

So your hive died, now what do you do?  The first thing to do after you discover a dead hive is to autopsy a honey bee colony and look for signs of disease, varroa and anything else you think may have caused the colony’s demise.

Continue reading: https://www.beverlybees.com/how-to-autopsy-a-honey-bee-colony/

(Note: Thank you to Jaime E. Garza, Apiary/Agricultural Standards Inspector, Department of Agriculture, Weights & Measures, County of San Diego, for the link and comments: “If your bee colonies are weak or if they die off this fall/winter here is a helpful resource to help you review what could have led to the colonies demise.”)

Get Ready For The Mite-A-Thon! September 8 - 15, 2018

CATCH THE BUZZ     August 29, 2018

Spread The Word - Local Beekeeping Clubs And Associations Are Key To Making The Mite-A-Thon A Success!

GET READY FOR THE MITE-A-THON!
September 8 to 15, 2018      

The Mite-A-Thon is a tri-national effort to collect mite infestation data and to visualize Varroa infestations in honey bee colonies across North America within a one-week window.  All beekeepers can participate, creating a rich distribution of sampling sites in Canada, the United States, and Mexico.       

OBJECTIVE: 1) To raise awareness about honey bee colony Varroa infestations in North America through effective monitoring methods. 2) Management strategies will be made available for discussion within bee organizations utilizing Mite-A-Thon partner developed information and outreach materials.     

PARTICIPANTS: All beekeepers in North America are encouraged to participate.

WHAT YOU NEED TO DO: 

Encourage your members to participate in September, through meetings, newsletters, emails, social media etc. 

Teach new beekeepers how to monitor for mites in August.

Help your members prepare their monitoring materials.

Support your members in making sure they are able to monitor mites effectively and report their data.

DATA COLLECTION: Varroa monitoring data will be uploaded to www.mitecheck.com.  

CONTACT: miteathon@pollinator.org or 415 362-1137

Get resources and stay up to date at www.pollinator.org/miteathon!

Thank you,

The Mite-A-Thon Partners

https://www.beeculture.com/catch-the-buzz-local-beekeeping-clubs-and-associations-are-key-to-making-the-mite-a-thon-a-success/

National Honey Bee Day 2018: Brush Up On Your Knowledge of Bee Protection

University of California - Kearney News Updates    By Stephanie Parreira    August 15, 2018

Honey bee on almond blossom. Photo by Jack Kelly Clark.Celebrate National Honey Bee Day by brushing up on your knowledge of bee protection—check out the newly revised Best Management Practices to Protect Bees from Pesticides and Bee Precaution Pesticide Ratings from UC IPM. These resources will help you strike the right balance between applying pesticides to protect crops and reducing the risk of harming our most important pollinators.

The best management practices now contain important information regarding the use of adjuvants and tank mixes, preventing the movement of pesticide-contaminated dust, and adjusting chemigation practices to reduce bee exposure to pesticide-contaminated water. The Bee Precaution Pesticide Ratings have also been updated to include ratings for 38 new pesticides, including insecticides (baits, mixtures, and biological active ingredients), molluscicides (for snail and slug control), and fungicides.

Most tree and row crops are finished blooming by now, but it is a good idea to learn about bee protection year-round. Visit these resources today to choose pesticides that are least toxic to bees and learn how you can help prevent bees from being harmed by pesticide applications.

http://ucanr.edu/blogs/blogcore/postdetail.cfm?postnum=27973

Honeybees Finding It Harder To Eat At America's Bee Hot Spot

Phys.org    By Seth Borenstein    July 2, 2018

This June 2015 photo provided by The Ohio State University shows a bee on a flower in Southwest Minnesota. A new federal study finds that honeybees in the Northern Great Plains are having a hard time finding food as conservation land is converted to row crops. (Sarah Scott/The Ohio State University via AP) A new federal study finds bees are having a much harder time finding food in America's last honeybee refuge.

The country's hot spot for commercial beekeeping is the Northern Great Plains of the Dakotas and neighboring areas, where more than 1 million colonies spend their summer feasting on pollen and nectar from wildflowers and other plants.

Clint Otto of the U.S. Geological Survey calculates that from 2006 to 2016, more than half the conservation land within a mile of bee colonies was converted into agriculture, usually row crops like soybeans and corn. Those don't feed bees.

Otto says bees that have a hard time finding food are less likely to survive the winter.

The study is in Monday's Proceedings of the National Academy of Sciences.

 Explore further: Land-use change rapidly reducing critical honey bee habitat in Dakotas

More information: Clint R. V. Otto el al., "Past role and future outlook of the Conservation Reserve Program for supporting honey bees in the Great Plains," PNAS (2018). www.pnas.org/cgi/doi/10.1073/pnas.1800057115 

Journal reference: Proceedings of the National Academy of Sciences

https://phys.org/news/2018-07-honeybees-harder-america-bee-hot.html

EU Nations Back Ban On Insecticides To Protect Honey Bees

REUTERS    By Philip Blenkinsop     April 2017 2018

BRUSSELS (Reuters) - European Union countries backed a proposal on Friday to ban all use outdoors of insecticides known as neonicotinoids that studies have shown can harm bees.

The ban, championed by environmental activists, covers the use of three active substances - imidacloprid developed by Bayer CropScience, clothianidin developed by Takeda Chemical Industries and Bayer CropScience as well as Syngenta’s thiamethoxam.

“All outdoor uses will be banned and the neonicotinoids in question will only be allowed in permanent greenhouses where exposure of bees is not expected,” the European Commission said in a statement.

Bayer called the ban “a sad day for farmers and a bad deal for Europe” and said it would not help bees. Many farmers, it said, had no other way of controlling pests and that the result was more spraying and a return to older, less effective chemicals.

The use of neonicotinoids in the European Union has been restricted to certain crops since 2013, but environmental groups have called for a total ban and sparked a debate across the continent about the wider use of chemicals in farming.

Campaign group Friends of the Earth described the decision of EU governments a “tremendous victory” for bees and for the environment.

“The European Commission must now focus on developing a strong pollinator initiative that boosts bee-friendly habitat and helps farmers cut pesticide-use,” it said.

Both Bayer and Syngenta have challenged the 2013 partial ban at the European Court of Justice. A verdict is due on May 17.

https://www.reuters.com/article/us-eu-environment-bees/eu-to-fully-ban-neonicotinoid-insecticides-to-protect-bees-idUSKBN1HY11W

NOTE: From SumofUs

I'm writing quickly to let you know some breaking news: WE WON! The EU neonics ban just passed.

A majority of European governments voted in favour of the European Commission's proposal.

This is a massive win for the bees -- and you and SumOfUs members around the world have helped make this happen. Thank you so much for your incredible support!

I'll be in touch in the coming days with a more detailed report back.

In the meantime, let's celebrate!

Wiebke and rest of the SumOfUs team

P.S. It’s only thanks to SumOfUs members like you that we won this amazing and historic bee-saving ban. But the battle to save the bees is far from over. Bayer and co will not give up now and neither can we. To keep the bees safe from pesticide giants we need sustained support from members like you -- it’s the most powerful form of support. Please can you set up a small monthly donation today so that we can keep fighting for and saving the bees.

EU Agrees Total Ban On Bee-Harming Pesticides

The Guardian      By Damian Carrington     April 27, 2018

The world’s most widely used insecticides will be banned from all fields within six months, to protect both wild and honeybees that are vital to crop pollination.

People protest ahead of the historic EU vote on a full neonicotinoids ban at Place Schuman in Brussels, Belgium. Photograph: Olivier Matthys/AP The European Union will ban the world’s most widely used insecticides from all fields due to the serious danger they pose to bees.

The ban on neonicotinoids, approved by member nations on Friday, is expected to come into force by the end of 2018 and will mean they can only be used in closed greenhouses.

Bees and other insects are vital for global food production as they pollinate three-quarters of all crops. The plummeting numbers of pollinators in recent years has been blamed, in part, on the widespread use of pesticides. The EU banned the use of neonicotinoids on flowering crops that attract bees, such as oil seed rape, in 2013.

But in February, a major report from the European Union’s scientific risk assessors (Efsa) concluded that the high risk to both honeybees and wild bees resulted from any outdoor use, because the pesticides contaminate soil and water. This leads to the pesticides appearing in wildflowers or succeeding crops. A recent study of honey samples revealed global contamination by neonicotinoids.

Vytenis Andriukaitis, European commissioner for Health and Food Safety, welcomed Friday’s vote: “The commission had proposed these measures months ago, on the basis of the scientific advice from Efsa. Bee health remains of paramount importance for me since it concerns biodiversity, food production and the environment.”

The ban on the three main neonicotinoids has widespread public support, with almost 5 million people signing a petition from campaign group Avaaz. “Banning these toxic pesticides is a beacon of hope for bees,” said Antonia Staats at Avaaz. “Finally, our governments are listening to their citizens, the scientific evidence and farmers who know that bees can’t live with these chemicals and we can’t live without bees.”

Martin Dermine, at Pesticide Action Network Europe, said: “Authorising neonicotinoids a quarter of a century ago was a mistake and led to an environmental disaster. Today’s vote is historic.”

However, the pesticide manufacturers and some farming groups have accused the EU of being overly cautious and suggested crop yields could fall, a claim rejected by others. “European agriculture will suffer as a result of this decision,” said Graeme Taylor, at the European Crop Protection Association. “Perhaps not today, perhaps not tomorrow, but in time decision makers will see the clear impact of removing a vital tool for farmers.”

The UK’s National Farmers’ Union (NFU) said the ban was regrettable and not justified by the evidence. Guy Smith, NFU deputy president, said: “The pest problems that neonicotinoids helped farmers tackle have not gone away. There is a real risk that these restrictions will do nothing measurable to improve bee health, while compromising the effectiveness of crop protection.”

A spokesman for the UK Department of Environment, Food and Rural Affairs welcomed the ban, but added: “We recognise the impact a ban will have on farmers and will continue to work with them to explore alternative approaches.” In November, UK environment secretary Michael Gove overturned the UK’s previous opposition to a full outdoor ban.

Neonicotinoids, which are nerve agents, have been shown to cause a wide range of harm to individual bees, such as damaging memory and reducing queen numbers.

But this evidence has strengthened recently to show damage to colonies of bees. Other research has also revealed that 75% of all flying insects have disappeared in Germany and probably much further afield, prompting warnings of “ecological armageddon”.

Prof Dave Goulson, at the University of Sussex, said the EU ban was logical given the weight of evidence but that disease and lack of flowery habitats were also harming bees. “Also, if these neonicotinoids are simply replaced by other similar compounds, then we will simply be going round in circles. What is needed is a move towards truly sustainable farming,” he said.

Some experts are worried that the exemption for greenhouses means neonicotinoids will be washed out into water courses, where they can severely harm aquatic life.

Prof Jeroen van der Sluijs, at the University of Bergen, Norway, said neonicotinoids will also continue to be used in flea treatments for pets and in stables and animal transport vehicles, which account for about a third of all uses: “Environmental pollution will continue.”

The EU decision could have global ramifications, according to Prof Nigel Raine, at the University of Guelph in Canada: “Policy makers in other jurisdictions will be paying close attention to these decisions. We rely on both farmers and pollinators for the food we eat. Pesticide regulation is a balancing act between unintended consequences of their use for non-target organisms, including pollinators, and giving farmers the tools they need to control crop pests.”

https://www.theguardian.com/environment/2018/apr/27/eu-agrees-total-ban-on-bee-harming-pesticides

Young, Hive-Bound Bees Befuddled By Common Chemicals

COSMOS    By Tanya Loos     April 12, 2018

Even bees that never leave the hive can be exposed to insecticides and herbicides that affect their sense of taste and reduce their ability to learn. Tanya Loos reports.

Young worker bees exposed to neonicotinoids and glyphosate suffered an impaired sense of taste and damage to their memories. Credit: JESUS INES / EYEEMHive-bound young honey bees (Apis mellifera) are being poisoned by insecticide and weed killer gathered by their foraging hive mates, according to new research published in the Journal of Experimental Biology. The chemicals cause brain damage in young worker bees, affecting both their ability to taste and to learn, placing the future of the colony at risk.

Recent research in Europe and the USA has demonstrated that insecticides known as neonicotinoids have a substantial impact on honey bee health. Glyphosate, a commonly used herbicide, has also been shown to have effects on non-target species such as bees. In agricultural landscapes it is expected that honey bees would be exposed to both of these agrochemicals.

Carolina Goñalons and Walter M. Farina from the Universidad de Buenos Aires decided to examine the effects of field-realistic concentrations of these common farm chemicals on young worker bees.

The role of worker bees is related to age. Young worker bees perform vital tasks such nest maintenance and care of the eggs and pupae. Later in life they become field or forager bees, and gather nectar and pollen for the colony. These skills involve behavioural plasticity, memory and discernment, so the Goñalons and Farina believe the young bees serve as important bioindicators to study the effects of these chemicals on colony health.

To accurately measure the effects of neonicotinoids and glyphosate on young bees, Goñalons and Farina raised broods of young bees, and exposed them to various concentrations of the chemicals.

As the concentrations of the chemicals are too low to kill the bees outright, the only way to test their effects is by training the bees to carry out tasks, and then measuring the bees’ performance under various levels of exposure to the chemicals. The bee responses were assessed at 5, 9, and 14 days old.

The bees were fitted with tiny, bee-sized harnesses and trained to respond to various concentrations of sucrose solution and smells. The indicators included antennae movement and extension of their mouthparts.

Both chemicals had a negative effect on the young bees’ olfactory learning, and reduced sucrose responsiveness or sense of taste. Glyphosate also reduced food uptake during rearing.

The paper demonstrates that neonicotinoids and glyphosate adversely affect memory, taste and smell in young bees – the very senses and skills required by worker bees for nectar foraging. The authors are concerned that compromised foraging behaviour may threaten the survival of the colony, especially at the end of the summer season.

https://cosmosmagazine.com/biology/young-hive-bound-bees-befuddled-by-common-chemicals

National Honey Bee Day - August 19, 2017 - Dr. Elina Nino Reminds Us to Help Honey Bees Cope with Pests

Green Blog    By Stephania Parreira    August 17, 2017

National Honey Bee Day is celebrated on the third Saturday of every August. This year it falls on Saturday the 19th. If you use integrated pest management, or IPM, you are probably aware that it can solve pest problems and reduce the use of pesticides that harm beneficial insects, including honey bees. But did you know that it is also used to manage pests that live inside honey bee colonies? In this timely podcast below, Elina Niño, UC Cooperative Extension apiculture extension specialist, discusses the most serious pests of honey bees, how beekeepers manage them to keep their colonies alive, and what you can do to help bees survive these challenges.

https://soundcloud.com/ucipm/help-honey-bees-cope-with-pests

To read the full transcript of the audio, click here.

Successful IPM in honey bee colonies involves understanding honey bee pest biology, regularly monitoring for pests, and using a combination of different methods to control their damage.

 

Visit the following resources for more information

For beekeepers:

The California Master Beekeeper Program

EL Niño Bee Lab Courses

EL Niño Bee Lab Newsletter

For all bee lovers:

EL Niño Bee Lab Newsletter

Haagen Dazs Honey Bee Haven plant list

UC IPM Bee Precaution Pesticide Ratings and video tutorial

Sources on the value of honey bees:

Calderone N. 2012. Insect-pollinated crops, Insect Pollinators and US Agriculture: Trend Analysis of Aggregate Data for the Period 1992–2009.

Flottum K. 2017. U.S. Honey Industry Report, 2016.

http://ucanr.edu/blogs/blogcore/postdetail.cfm?postnum=24914

Probiotics Could Improve Survival Rates in Honey Bees Exposed to Pesticides, Study Finds

Science Daily     Source: Lawson Health Research Institute    June 19, 2017

In a new study from Lawson Health Research Institute (Lawson) and Western University, researchers have shown that probiotics can potentially protect honey bees from the toxic effects of pesticides.

Honey bees are critical to agriculture as they pollinate approximately 35 per cent of the global food crop, contributing an estimated $4.39 billion per year to the Canadian economy. Pesticides are currently used to maximize crop yields, but the most common pesticides, neonicotinoid insecticides, are a major factor in colony collapse disorder which is killing honey bee populations.

"The demise of honey bees would be disastrous for humankind. A current dilemma in agriculture is how to prevent bee decline while mitigating crop losses," says Dr. Gregor Reid, Director for the Canadian Centre for Human Microbiome and Probiotic Research at Lawson, and Professor at Western's Schulich School of Medicine & Dentistry. "We wanted to see whether probiotics could counter the toxic effects of pesticides and improve honey bee survival."

The study was performed by trainees Brendan Daisley and Mark Trinder in Dr. Reid's lab at St. Joseph's Hospital in London, Ontario. The researchers utilized fruit flies as a well-known model for studying pesticide toxicity in honey bees. Both insects are affected similarly by neonicotinoids, have very similar immune systems, and share many common microbes present in their microbiota -- the collection of microorganisms found in each insect.

The researchers found that fruit flies exposed to one of the world's most commonly used pesticides, imidacloprid (IMI), experienced changes to their microbiota and were more susceptible to infections. The flies were exposed to a comparable amount of pesticide as honey bees in the field.

By administering a specific strain of probiotic lactobacilli, survival among fruit flies exposed to the pesticide improved significantly. The mechanism involved stimulating the immune system through a pathway that insects use to adapt to infection, heat and other stresses.

"Our study showed that probiotic lactobacilli can improve immunity and potentially help honey bees to live longer after exposure to pesticides," says Daisley, an MSc candidate. He notes that probiotic lactobacilli could be easily administered through pollen patties, which are used by beekeepers to provide nutritional support and anti-pesticide effects to honey bees.

Over the winter months, honey bee mortality has been steadily increasing with ranges of 38 to 58 per cent in recent years, two to three times higher than the sustainable level. In Ontario alone, 340 bee keepers reported an abnormally high number of bee deaths, with over 70 per cent of dead bees testing positive for neonicotinoid residues (Government of Ontario).

"While cessation of pesticide use would be ideal, farmers currently have little alternative to obtain the yields that keep their businesses viable," says Dr. Reid. "Until we can cease using pesticides, we need to find ways to protect humans and wildlife against their side effects. Probiotics may prove as an effective protective intervention against colony collapse disorder."

The researchers hope to further study the mechanisms involved in this process and perform field tests on honey bee populations in Ontario.

Story Source: Materials provided by Lawson Health Research Institute. Note: Content may be edited for style and length.

Journal Reference: Brendan A. Daisley, Mark Trinder, Tim W. McDowell, Hylke Welle, Josh S. Dube, Sohrab N. Ali, Hon S. Leong, Mark W. Sumarah, Gregor Reid. Neonicotinoid-induced pathogen susceptibility is mitigated by Lactobacillus plantarum immune stimulation in a Drosophila melanogaster model. Scientific Reports, 2017; 7 (1) DOI: 10.1038/s41598-017-02806-w

https://www.sciencedaily.com/releases/2017/06/170619101827.htm

Can Mushrooms Save the Honey Bee?

bioGraphic     Produced by Louie Schwartzberg    April 25, 2017

A blood-sucking mite is wreaking havoc on honey bees - but scientists have discovered a surprising new way to fight back.

A decade ago, honey bee populations around the world began declining at an alarming rate. In the early years of this trend, beekeepers lost 60 percent or more of their hives to a mysterious phenomenon that came to be known as “colony collapse disorder” (CCD). In each of these cases, worker bees simply disappeared, and it doesn’t take long for a colony to collapse without workers to provide food and to care for the young. Although this trend seems to have leveled off somewhat in recent years, the current average rate of 30 percent annual mortality is still nearly double the average rate reported prior to 2006.

Honey bees (Apis mellifera) are native to Europe, western Asia and Africa, but have also been introduced to many other parts of the world to serve as pollinators of agricultural crops. Today, honey bees pollinate one-third of all the crops we consume—nearly a thousand varieties in all—and are by far the world’s most important and economically valuable pollinators for commercial agriculture. In the U.S. alone, their annual value is estimated at $5–14 billion.

Since the first reports of dead and dying honey bee colonies began to stream in, scientists have scrambled to determine the cause, or causes, of CCD. One threat in particular stood out as a major cause of honey bee declines: varroa mites (Varroa destructor). These tiny parasitic arachnids weaken adult and juvenile bees by sucking their blood. They also transmit a number of viruses that can spread throughout a colony like wildfire. To make matters worse, the mites reproduce quickly and, because of this, can rapidly evolve resistance to traditional chemical pesticides.

While many scientists have continued to search for causes of honey bee declines, others have turned their attention to developing new, more sustainable solutions to these threats. One of the more surprising and promising of these strategies is the use of compounds produced by a widely-distributed mushroom (Metarhizium anisopliae) that is known to parasitize a number of different insects. Researchers from Washington State University have found that spores and extracts from this mushroom are particularly toxic to varroa mites but—in low doses—leave bees unharmed. In fact, bees in hives treated with Metarhizium tend to be much healthier and live longer than those in untreated hives. While large-scale trials are just now being implemented, early results suggest that a common mushroom may hold the answer to at least one major driver of honey bee declines.

Bees Face Heavy Pesticide Peril from Drawn-out Sources

Phys.org    By Blaine Friedlander    April 20, 2017

A honeybee collects the pollen from an apple blossom. Credit: Kent Loeffler/ProvidedHoneybees - employed to pollinate crops during the blooming season - encounter danger due to lingering and wandering pesticides, according to an analysis of the bee's own food.

Researchers used 120 pristine honeybee colonies that were placed near 30 apple orchards around New York state. After allowing the bees to forage for several days during the apple flowering period, the scientists examined each hive's "beebread" – the bees' food stores made from gathered pollen – to search for traces of pesticides.

In 17 percent of colonies, the beebread revealed the presence of acutely high levels of pesticide exposure, while 73 percent were found to have chronic exposure.

The new Cornell study was published April 19 in Nature Scientific Reports.

"Our data suggest pesticides are migrating through space and time," said lead author Scott McArt, assistant professor of entomology, who explained that bees may be gathering pollen from nontarget wildflowers, field margins and weeds like dandelions where insecticides seem to linger.

"Surprisingly, there is not much known about the magnitude of risk or mechanisms of pesticide exposure when honeybees are brought in to pollinate major agricultural crops," he said. "Beekeepers are very concerned about pesticides, but there's very little field data. We're trying to fill that gap in knowledge, so there's less mystery and more fact regarding this controversial topic."

More than 60 percent of the found pesticides were attributed to orchards and surrounding farmland that were not sprayed during the apple bloom season, according to the study. McArt said that persistent insecticides aimed at other crops may be surrounding the orchards. In addition, pre-bloom sprays in orchards may accumulate in nearby flowering weeds.

Honeybees create honey in their hive through the topped-out combs, and they keep beebread - their food - in the other combs. Credit: Emma Mullen/Provided"We found risk was attributed to many different types of pesticides. Neonicotinoids were not the whole story, but they were part of the story." he said. "Because neonicotinoids are persistent in the environment and accumulate in pollen and nectar, they are of concern. But one of our major findings is that many other pesticides contribute to risk."

Mass-blooming crops flower in big bursts during the pollination season, so crop producers rent armies of honeybees to supplement the work of wild bees. "There are so many flowers at one given time, often there may not be enough wild bees to perform sufficient pollination services," said McArt.

Crop pollination by insects, particularly bees, can be valued at more than $15 billion annually to the U.S. economy, according to research by Nicholas Calderone, professor emeritus of entomology. Producers and beekeepers are now concerned about the high rates of hive declines – estimated to be about 42 percent in 2014-15 domestically. In New York, the losses are often over 50 percent.

To understand the economics, beekeepers may charge more than $100 per colony for pollination services for apple producers in New York, almond producers in California and blueberry growers in North Carolina. For large farms, several hundred to a thousand pollinating colonies are brought in via large trucks.

Commercial beekeepers sometimes assume they will lose entire colonies, which is why pollination service rates have tripled or quadrupled over the past 15 years, McArt said. He recently shared his research with growers at a New York State Integrated Pest Management meeting, and several farmers said they are interested in altering crop management practices to reduce honeybee injury.

The New York State Department of Environmental Conservation and the Department of Agriculture and Markets assembled a Pollinator Protection Plan in 2016. Scientists are developing best management practices, reviving pollinator populations, researching and monitoring, and developing outreach and educational programs for beekeepers and producers.

Co-authors on the study, "High Pesticide Risk to Honeybees Despite Low Focal Crop Pollen Collection During Pollination of a Mass Blooming Crop," are lab manager Ashley Fersch; graduate student Nelson Milano; Lauren Truitt '17; and former research associate Katalin Böröczky.

https://phys.org/news/2017-04-bees-heavy-pesticide-peril-drawn-out.html

To Save Honey Bees, Human Behavior Must Change

Science Daily    Source: Entomological Society of America    April 6, 2017

Poor management practices have enabled spread of bee pathogens, bee researcher argues

In the search for answers to the complex health problems and colony losses experienced by honey bees in recent years, it may be time for professionals and hobbyists in the beekeeping industry to look in the mirror.

In a research essay to be published this week in the Entomological Society of America's Journal of Economic Entomology, Robert Owen argues that human activity is a key driver in the spread of pathogens afflicting the European honey bee (Apis mellifera) -- the species primarily responsible for pollination and honey production around the world -- and recommends a series of collective actions necessary to stem their spread. While some research seeks a "magic bullet" solution to honeybee maladies such as Colony Collapse Disorder, "many of the problems are caused by human action and can only be mitigated by changes in human behavior," Owen says.

Owen is author of The Australian Beekeeping Handbook, owner of a beekeeping supply company, and a Ph.D. candidate at the Centre of Excellence for Biosecurity Risk Analysis (CEBRA) at the University of Melbourne. In his essay in the Journal of Economic Entomology, he outlines an array of human-driven factors that have enabled the spread of honey bee pathogens:

  • Regular, large-scale, and loosely regulated movement of bee colonies for commercial pollination. (For instance, in February 2016 alone, of the 2.66 million managed bee colonies in the United States, 1.8 million were transported to California for almond crop pollination.).
  • Carelessness in the application of integrated pest management principles leading to overuse of pesticides and antibiotics, resulting in increased resistance to them among honey bee parasites and pathogens such as the Varroa destructor mite and the American Foul Brood bacterium (Paenibacillus larvae),
  • The international trade in honey bees and honey bee products that has enabled the global spread of pathogens such as varroa destructor, tracheal mite (Acarapis woodi), Nosema cerana, Small Hive Beetle (Aethina tumida ), and the fungal disease chalkbrood (Ascosphaera apis).
  • Lack of skill or dedication among hobbyist beekeepers to adequately inspect and manage colonies for disease.

Owen offers several suggestions for changes in human behavior to improve honey bee health, including:

  • Stronger regulation both of global transport of honey bees and bee products and of migratory beekeeping practices within countries for commercial pollination.
  • Greater adherence to integrated pest management practices among both commercial and hobbyist beekeepers.
  • Increased education of beekeepers on pathogen management (perhaps requiring such education for registration as a beekeeper).
  • Deeper support networks for hobby beekeepers, aided by scientists, beekeeping associations, and government.

"The problems facing honeybees today are complex and will not be easy to mitigate," says Owen. "The role of inappropriate human action in the spread of pathogens and the resulting high numbers of colony losses needs to be brought into the fore of management and policy decisions if we are to reduce colony losses to acceptable levels."

Story Source: Materials provided by Entomological Society of America.

Journal Reference: Robert Owen. Role of Human Action in the Spread of Honey Bee (Hymenoptera: Apidae) Pathogens. Journal of Economic Entomology, 2017; DOI: 10.1093/jee/tox075

https://www.sciencedaily.com/releases/2017/04/170406121535.htm

Vanishing Act: Scientists Find Possible Clue to Disappearing Bees

University of Texas at Austin      By Nancy Moran     March 14, 2017

In the winter of 2004/05, many beekeepers across America went to check on their honeybee hives and were shocked to find most of the adult bees had vanished, leaving behind the queen and immature bees. Millions of bees mysteriously disappeared, leaving farms with fewer pollinators for crops.

Colony collapse disorder, as it was later dubbed, has continued to vex beekeepers year after year — and there’s still no effective solution. Explanations for the phenomenon have included exposure to pesticides, habitat loss and bacterial infections. But now, a new study from The University of Texas at Austin suggests that antibiotics could play a role.

Researchers found that honeybees treated with a common antibiotic were half as likely to survive the week after treatment as a group of untreated bees. The antibiotics cleared out beneficial gut bacteria in the bees, making way for a harmful pathogen, which also occurs in humans, to get a foothold. The research is the latest discovery to indicate overuse of antibiotics can sometimes make living things, including people, sicker.

Vanishing bees is cause for concern because many of our most cherished food crops are pollinated by honeybees including almonds, apples, avocados, blueberries, carrots, cranberries, onions, squash, and watermelon. And that’s not to mention honey itself.

In large-scale U.S. agriculture, beekeepers typically apply antibiotics to their hives several times a year. The strategy aims to prevent bacterial infections that can lead to a widespread and destructive disease that afflicts bee larvae, called foulbrood.

“Our study suggests that perturbing the gut microbiome of honeybees is a factor, perhaps one of many, that could make them more susceptible to declining and to the colony collapsing. Antibiotics may have been an underappreciated factor in colony collapse.” 

-Nancy Moran, professor of integrative biology at UT Austin and co-author of the study published March 14 in the journal PLOS Biology.

To learn more, read the press release: “Overuse of Antibiotics Brings Risks for Bees — and for Us

https://news.utexas.edu/2017/03/14/scientists-find-possible-clue-to-disappearing-bees-1