Bees From The Inside Out

National Science Foundation    July 7, 2014

It is 1,825 miles from New Haven, Conn., to Austin, Tex., which typically means 30 hours of driving and three nights in motels, not an easy trip for anyone. But for researchers moving from Yale University to a new lab at the University of Texas last August, it proved especially challenging. They made the journey in a minivan with a pet cat and 100,000 bees.

"That was probably the most heroic event in our beekeeping saga to date," says evolutionary biologist Nancy Moran, a professor at the University of Texas at Austin, who studies symbiosis, particularly among multi-cellular hosts and microbes. "We didn't want to be without bees upon arrival in Texas, and...

Continue reading...

Antibiotic Resistance Killing Off Bees


Yale Daily News  By Emma Goldberg  11/6/12

Yale researchers have identified a potential culprit in a nationwide increase of honeybee deaths — resistance to an important antibiotic.

In the Oct. 30 issue of the mBio journal, Yale professor of ecology and evolutionary biology Nancy Moran published a study showing that beneficial bacteria found in the guts of honeybees have acquired genes that make bees resistant to tetracycline, an antibiotic used to prevent colony-destroying infections and other bacterial diseases. Moran’s research identified eight tetracycline-resistant genes in American honeybees that were absent in honeybee populations where such antibiotic treatment is banned, suggesting that use of tetracycline has genetically altered beneficial bacteria and made colonies more prone to infection.

“We noticed that the [first] colony collapses happened in 2006, which is when the antibiotic was first introduced...


Honey Bees Harbor Atibiotic-Resistance Genes

(The following is brought to us by the American Bee Journal) 10/29/12

Bacteria in the guts of honey bees are highly resistant to the antibiotic tetracycline, probably as a result of decades of preventive antibiotic use in domesticated hives. Researchers from Yale University identified eight different tetracycline resistance genes among U.S. honey bees that were exposed to the antibiotic, but the genes were largely absent in bees from countries where such antibiotic use is banned. The study appears on October 30 in mBio®, the online open-access journal of the American Society for Microbiology.

"It [resistance] seems to be everywhere in the U.S.," says Nancy Moran of Yale University, a senior author on the study. "There's a pattern here, where the U.S. has these genes and the others don't."

Honey bees the world over are susceptible to the bacterial disease called "foulbrood", which can wipe out a hive faster than beekeepers can react to the infection. In the U.S., beekeepers have kept the disease at bay with regular preventive applications of the antibiotic oxytetracycline, a compound that closely resembles tetracycline, which is commonly used in humans.  Oxytetracycline has been in use among beekeepers since the 1950s, and many genes that confer resistance to oxytetracycline also confer resistance to tetracycline.

Using sensitive molecular techniques, Moran and her colleagues screened honey bees from several locations in the United States and from Switzerland, the Czech Republic, and New Zealand, as well as several wild bumblebees from the Czech Republic, for the presence and abundance of tetracycline resistance genes. They found that U.S. honey bees have greater numbers and a more diverse set of tetracycline resistance genes than honey bees from the other countries.

Moran says it is reasonable to expect to see widespread resistance among bees, considering the decades-long use of oxytetracycline in honey bee hives. "It seems likely this reflects a history of using oxytetracycline since the 1950s. It's not terribly surprising. It parallels findings in other domestic animals, like chickens and pigs," says Moran.

Moran notes that beekeepers have long used oxytetracycline to control the bacterium that causes foulbrood, but the pathogen eventually acquired resistance to tetracycline itself. Of the foulbrood pathogens Melissococcus pluton and Paenibacillus larvae, Moran says, "They carry tetL, which is one of the eight resistance genes we found. It's possible that the gene was transferred either from the gut bacteria to the pathogen or from the pathogen to the gut bacteria."

Switzerland, the Czech Republic, and New Zealand do not allow beekeepers to use oxytetracycline in hives, so it is perhaps predictable that honey bees and wild bumblebees from these countries harbored only two or three different resistance genes and only in very low copy numbers, suggesting that the bacteria did not require the genes very frequently.

The authors of the study point out that by encouraging resistance and altering the bacteria that live in honey bee guts, decades of antibiotic applications may have actually been detrimental to honey bee wellbeing. Studies have suggested that the bacterial residents of the honey bee gut play beneficial roles in neutralizing toxins in the bees' diet, nutrition, and in defending the bee against pathogens. By disrupting the honey bee microbiota and reducing its diversity, long-term antibiotic use could weaken honey bee resistance to other diseases. Hence, the treatment that was meant to prevent disease and strengthen the hive may actually weaken its ability to fight off other pathogens.
Moran says while the study is interesting from the perspective of honey bee health and could have implications for how honey bee diseases are managed, the presence of resistance genes in the honey bee gut doesn't pose a direct risk to humans. These gut bacteria, says Moran, "don't actually live in the honey, they live in the bee. We've never actually detected them in the honey. When people are eating honey, they're not eating these bacteria."

Subscribe to the American Bee Journal and sign up for ABJ Extra