Pesticides Deliver a One-Two Punch to Honey Bees

Phys.Org By Society of Environmental Toxicology and Chemistry August 5, 2019

Researchers conduct semi-field experiments on honey bees. Credit: Lang Chen

Researchers conduct semi-field experiments on honey bees. Credit: Lang Chen

Adjuvants are chemicals that are commonly added to plant protection products, such as pesticides, to help them spread, adhere to targets, disperse appropriately, or prevent drift, among other things. There was a widespread assumption that these additives would not cause a biological reaction after exposure, but a number of recent studies show that adjuvants can be toxic to ecosystems, and specific to this study, honey bees.

Jinzhen Zhang and colleagues studied the effects on honey bees when adjuvants were co-applied at "normal concentration levels" with neonicotinoids. Their research, recently published in Environmental Toxicology and Chemistry, found that the mixture of the pesticide and the adjuvant increased the mortality rate of honey bees in the lab and in semi-field conditions, where it also reduced colony size and brooding.

When applied alone, the three pesticide adjuvants caused no significant, immediate toxicity to honeybees. However, when the pesticide acetamiprid was mixed with adjuvants and applied to honeybees in the laboratory, the toxicity was quite significant and immediate. In groups treated with combined pesticide-adjuvant concentrates, mortality was significantly higher than the control groups, which included a blank control (no pesticide, no adjuvant, only water) and a control with only pesticide (no adjuvant). Further, flight intensity, colony intensity and pupae development continued to deteriorate long after the application comparative to the control groups.

Zhang noted that this study, "contributed to the understanding of the complex relationships between the composition of pesticide formulations and bee harm," and stressed that "further research is required on the environmental safety assessment of adjuvants and their interactions with active ingredients on non-target species."

https://phys.org/news/2019-08-pesticides-one-two-honey-bees.html

How A Queen Bee Achieves Her Regal Status That Elevates Her From Her Sterile Worker Sisters Has Been A Long-Standing Question

CATCH THE BUZZ May 15, 2019

queen bee status.jpg

CRISPR gene-editing used to understand links between diet and genetics to make a future honey bee queen.

How a queen bee achieves her regal status that elevates her from her sterile worker sisters has been a long-standing question for scientists studying honey bees.

To get at the heart of the question, scientists have now used for the first time the gene-editing tool CRISPR/Cas9 to selectively shut off a gene for necessary for general female development.

By doing so, they have shown that a dramatic difference in gonad size between honey bee queens and their female workers in response to their distinct diets requires the switching on of a specific genetic program, according to a new study published in the open-access journal PLOS Biology by Arizona State University honey bee expert and School of Life Sciences Regents’ Professor Robert Page, and colleagues Annika Roth and Martin Beye of Heinrich-Heine University in Dusseldorf, Germany.

“This study focused on a critically important and missing connection between nutrition and the developmental processes that make a queen,” said Page, who is also a distinguished sustainability scholar in ASU’s Julie Ann Wrigley Global Institute of Sustainability. “This has been a major unanswered question in developmental biology for more than a century.”

The finding is likely to allow more detailed analysis of the interplay of genes and nutrition that drives the selection of queens from worker bees.

Queen bees differ physically from their sterile sister workers, with a much larger body and ovaries that are needed for her prime responsibility in life — to be tended to just so to produce all the future offspring in the hive. As such, future queens are fed a bee delectable, sugar-rich “royal jelly” from the time they emerge as larvae — while future workers receive relatively sugar-poor “worker jelly.” But the degree to which diet alone determines the difference in gonadal size between queen and worker has been unclear.

To explore the genetic influences on gonad size, the authors first showed that reduced sugar had no effect on male gonad size, indicating that diet isn’t the sole influence. Next, using CRISPR, they knocked out the so-called feminizer gene in early worker larvae.

With the feminizer gene turned off by CRISPR, they found that a low-sugar diet had no effect on gonad size. In fact, their gonad size was similar to those typically found in male drones. The authors conclude that the feminizer gene must be switched on not only to produce ovaries but also to permit nutrient level to affect gonad size.

“Because of the ability to rapidly screen mutations in honey bees allowed by gene editing, this study is likely to set the stage for much more extensive investigations of the role of individual genes and gene pathways in immune defense and behavioral and developmental control,” Beye said.

These results will spur further work to determine if the same gene is needed to allow development of large ovaries in future queens.

https://www.beeculture.com/catch-the-buzz-how-a-queen-bee-achieves-her-regal-status-that-elevates-her-from-her-sterile-worker-sisters-has-been-a-long-standing-question

Read more - Source: https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.3000171

Honey Bee Caste Systems: Part 1 - Honey Bee Genetics

Bee Informed Partnership By Garrett Slater March 19, 2019

I have always been fascinated with queens and workers. In fact, I spent my master’s degree studying the mechanisms that produce queens and workers. I won’t bore you with my master’s thesis, but I did want to write about the fascinating differences between queens and workers. This topic includes a lot of information, so I decided to split this topic into 3 blog installment: 

  • The Genetic Book of Life-The basics to honey bee genetics

  • How genetics and the environment shape honey bee workers and queens

  • The differences between queens and workers 

Honey bees are unique living organisms. Some fascinating traits honey bees possess include: 1) distinct reproductive caste system, i.e. fertile queens that lay the colony’s eggs and sterile workers who forego their own reproduction but help raise their brothers and sisters instead, 2) they have a behavioral division of labor within the worker caste, and 3) they have distinct sexual dimorphism. As most beekeepers know, honey bees include many more interesting characteristics, but I included the three that I am most interested in! While honey bees are quite unique compared to any other animal or living form, the underlying material by which these traits are passed on to future generations is shared with all organic living organisms: Deoxyribonucleic Acid or DNA. DNA carries the genetic material necessary to produce the distinct and fundamental characteristics of honey bees. While all living organisms have DNA, honey bee genetics is unique.

Honey bees have a system of sex determination (male drones versus female queens or workers) known as haplodiploidy. This differs from human sex determination in several ways. With humans, both males and females carry two copies of every chromosome (they are both diploid), one inherited from the father, and one from the mother. Human males result because they have a specific sex chromosome (Y chromosome) that females lack. With honey bees, queen bees carry sperm inside a specialized compartment within her body that she obtained from earlier mating events, and she determines whether or not to fertilize each egg as it is being laid. Males develop from unfertilized eggs, and therefore only carry a single set of chromosomes (Haploid) and females develop from fertilized eggs and possess two copies of each chromosome (Diploid), Females receive DNA from both parents, while males receive DNA from just the mother. Therefore, this is referred to as a Haplodiploid genetic system.

Caste System 1 .jpg

Figure 1: Depicted above is the genetics of honey bee workers and queens. Female workers and queens result from fertilization, which is the act of fusing female queen eggs with male drone sperm. This combination results in a diploid egg and contains chromosomes from both the male drone and the female queen. Unique to honey bees, diploid females can develop into either a queen or worker. This depends upon the nutrition they receive during development.

Caste system 2.jpg

Figure 2: The picture above is the genetics of a laying worker. A laying worker has underdeveloped reproductive traits, so they cannot mate with drones. Because of this, they cannot fertilize eggs and produce female workers or queens. The laying workers can, however, produce unfertilized haploid males. This is a last-ditch effort for the colony to pass along its genetic material to future generations because the colony will not survive.

Caste system 3.jpg

Figure 3: The picture above shows a queen laying drone eggs. Queens can either lay fertilized or unfertilized eggs. This typically depends upon cell size as queens lay unfertilized drone eggs into drone cells. In some situations, queens run out of viable sperm for many different reasons. Queens can only produce unfertilized drone eggs, which can spell doom for a once prosperous colony.  

Figures 1-3 summarize the genetic differences between diploid females and haploid males. In order for females to develop, they need a different genetic recipe from both the mother and father. Diploid males are a great example of how important these different genetic recipes are in sex determination. In certain cases, diploid males can result if they receive identical chromosomes from both the father and mother. This can result from very inbred populations, and results in infertile males.

Queens are the only individuals in the colony that can produce both diploid female workers or queens and also produce haploid males. I will touch on why workers cannot produce diploid females in a later blog, but I describe in some detail in Figures 2-4. Though, workers can lay drones because workers are able to lay unfertilized eggs. Essentially, workers cannot mate or store sperm, so they produce just haploid males.

Honey Bee genetics is fascinating. If you enjoyed reading this blog as much as I enjoyed writing it, keep an eye out for the next installment on how genetics and the environment shape honey bee workers and queen. 

Cheers!
Garett Slater
Midwest Tech-Transfer Team
University of Minnesota
Bee Informed Partnership

https://beeinformed.org/2019/03/19/honey-bee-caste-systems-part-1-honey-bee-genetics/

Honey Bee Colonies More Successful By Foraging on Non-Crop Fields

USDA-ARS By Kim Kaplan March 20, 2019

An adult worker bee gathering pollen and nectar from a helianthus flower. Credit: USDA-ARS

An adult worker bee gathering pollen and nectar from a helianthus flower. Credit: USDA-ARS

Honey bee colonies foraging on land with a strong cover of clover species and alfalfa do more than three times as well than if they are put next to crop fields of sunflowers or canola, according to a study just published in Scientific Reportsby an Agricultural Research Service (ARS) scientist and his colleagues.

Managed honey bee colonies placed from May until October next to land in the U.S. Department of Agriculture Conservation Reserve Program (CRP) in North Dakota were more robust with better colony health including higher numbers of bees and increased ability to turn nectar and pollen into vitellogenin—a compound that plays a number of roles including serving as the base for producing royal jelly, which bees use to nurture larvae and turn larvae into queens.

Vitellogenin also is a critical food storage reservoir for honey bee colonies, and a colony’s success in the spring depends on total vitellogenin reserves carried by specialized bees over the winter. Vitellogenin prolongs the lifespans of queens and forager bees as well as strongly influencing key behaviors that increase colony survival such as determining how old bees are before they begin foraging and whether they tend to gather nectar or pollen.

After spending six months foraging on CRP land and then overwintering, more than 78 percent of the colonies were graded A, the highest level commanding the highest price for pollination services in January, meaning a colony has six or more frames well filled with bees, capped cells and bee brood (larvae).

With colonies kept near intensely cultivated fields and then overwintered under the same circumstances to the CRP apiaries, only 20 percent could be rated Grade A and 55 percent were less than 2 frames or dead.

Land in the USDA Conservation Reserve Program provides valuable forage for honey bees. Credit: USDA-ARS

Land in the USDA Conservation Reserve Program provides valuable forage for honey bees. Credit: USDA-ARS

“With California almond growers having paid an average of $190 per Grade A colony in the 2018 almond pollination season, the need for beekeepers to have access to land that has diverse and substantial nectar and pollen sources is obvious,” explained ARS research microbiologist Kirk E. Anderson. Anderson is with ARS’ Carl Hayden Bee Research Center in Tucson, Arizona.

Anderson and his team, including ARS molecular biologist Vincent Ricigliano, also profiled several molecular colony level biomarkers, looking for a way to simplify how researchers can measure how well a honey bee colony is doing in different foraging conditions while overcoming individual bee variation.

They found that higher levels of vitellogenin stores were the best predictor of colony size after winter. Higher levels also were associated with increased production of antioxidant enzymes—which reduce cell damage—and greater production of antimicrobial peptides, which contribute to disease resistance.

The researchers eliminated other potential common causes of colony decline except for forage resource, highlighting the importance of pollen and nectar quality provided by the area surrounding the apiary. While the link between the quality of forage and colony health is generally known, this study highlights the value of agriculturally marginal (CRP) landscapes for honey bee production in a region that hosts close to half the U.S. managed bee population (about 1 million colonies) during the summer.

“We’ve also shown that the benefits of high-quality forage such as that provided by CRP land carries right through the overwintering period and leaves bees in the best shape to build up their numbers before being needed to pollinate almonds in February and early March,” said Ricigliano.

Our results provide land managers and scientists with methods to evaluate the relationship between bees and the landscape. For beekeepers, it provides a basis for making decisions about where to put their apiaries for the summer and fall after crop pollination ends so that the colonies will be in a position to build up robust healthy numbers in time for the migration to California for almond pollination, Anderson added.

The Agricultural Research Service is the U.S. Department of Agriculture's chief scientific in-house research agency. Daily, ARS focuses on solutions to agricultural problems affecting America. Each dollar invested in agricultural research results in $20 of economic impac

https://www.ars.usda.gov/news-events/news/research-news/2019/honey-bee-colonies-more-successful-by-foraging-on-non-crop-fields/

Quantum Dots Track Pollinators

The Optical Society By Stewart Wills February 18, 2019

A bee, caught after visiting a flower whose pollen grains had been labelled with quantum dots. The glowing dots show evidence of the bee’s travels, and how the pollen attaches to it, when the insect is examined under the microscope in UV light. [Image: Corneile Minnaar]

A bee, caught after visiting a flower whose pollen grains had been labelled with quantum dots. The glowing dots show evidence of the bee’s travels, and how the pollen attaches to it, when the insect is examined under the microscope in UV light. [Image: Corneile Minnaar]

A particularly sobering aspect of global environmental degradation is the rapid decline of insect populations. One recent study in the journal Biological Conservation estimated that 40 percent of the world’s insect species could go extinct within the next three decades, owing to habitat loss due to agriculture and urbanization, pesticides, climate change and other insults.

Quite apart from playing havoc with the food web, declines in certain insect populations threaten the bugs’ crucial role as pollinators. Humans rely on insects to pollinate more than 30 percent of food crops—a huge service that nature provides free of charge.

That makes it essential to understand which insects are pollinating which plants—even to the point of tracking individual pollen grains from flower to flower via their insect vectors. But a robust, useful system for labeling the tiny grains, which are subject to the vicissitudes of wind and weather in addition to the mazy paths of insects, has been fiendishly difficult to devise. Now, a pollination biologist in South Africa has hit upon a novel answer: tag the pollen with fluorescent quantum dots (Meth. Ecol. Evol., doi: 10.1111/2041-210X.13155).

Dots, flowers and pollen

Quantum dots (QDs) are luminescent semiconductor nanocrystals that, when excited by light of a specific wavelength (such as UV), re-emit at visible wavelengths, with the specific emission wavelength depending on the size of the quantum dot. They’ve found use in a wide variety of contexts including biomedical study (see, “Quantum Dots for Biomedicine,” OPN, April 2017). Indeed, the pollination biologist behind the new study, Corneile Minnaar of Stellenbosch University, South Africa, reportedly got the idea for pollen tracking with QDs from a paper on their potential use in targeting and imaging cancer cells.

Corneile Minnaar, applying a solution of lipid-tagged quantum dots to the business end of a flower. [Image: Ingrid Minnaar]

Corneile Minnaar, applying a solution of lipid-tagged quantum dots to the business end of a flower. [Image: Ingrid Minnaar]

To use QDs to track individual pollen grains, Minnaar—who began the work as a Ph.D. student at Stellenbosch, where he’s now a postdoc in the lab of pollination biologist Bruce Anderson—first had to figure out how to tie the dots to the pollen. To do so, he began with commercially available, nontoxic CuInSexS2−x/ZnS (core/shell) QDs with four different emission wavelengths: 550 nm (green), 590 nm (yellow), 620 nm (orange) and 650 nm (red). Next, Minnaar chemically tied the QDs to an oleic‐acid ligand molecule that would latch onto the lipid-rich “pollenkitt” that surrounds pollen grains—the same substance that makes pollen stick to the coats of pollinators like honeybees.

Minnaar then took the lipid-doped QDs and dissolved them into a volatile hexane solvent, and micro-pipetted drops of the solvent onto the pollen-rich anthers on flowers of four different plant species. The ligand-bearing QDs quickly stuck to the pollenkitt on the grains, as expected, and the volatile hexane rapidly evaporated away. The result: flowers packed with potentially trackable, QD-labeled pollen.

Building an “excitation box”

The next problem to be solved was how actually to read the signal from the tagged pollen. While Minnaar says he started with a toy pen with a UV LED light to excite the fluorescence in the dots, he clearly needed something a bit more scalable. To get there, he used a 3-D printer to create a black “quantum-dot excitation box” that could fit under a dissection microscope, and that included four commercial UV LEDs, a long-pass UV filter, and supporting housing. In a press release accompanying the work, Minnaar said the UV box could “easily be 3D-printed at a cost of about R5,000 [around US$360], including the required electronic components.”

Minnaar tested the ability of the pollen grains to hold onto the QDs by agitating samples in an ethanol solution, and found that the grip was firm. Also, in a controlled, caged experiment, he trained honeybees to move from tagged to untagged samples of a particular flower species, and found that labeling the grains with the QDs had no effect on the grains’ ability also to stick to the bees.

Robust system

The general robustness of the system suggests it could serve well in tracking pollinators in wild settings, quantifying parameters such as pollen loss and the importance of certain species to sustaining specific kinds of plants. That said, there are still a few limitations, according to the paper. One is that right now, “there are only four commercially available, distinguishable quantum dot colors in the visible range,” which could limit studies to only four plant species at a time. And, while initial tests were encouraging, more work needs to be done to determine whether the labeling and application process has effects on pollen viability that could complicate experiments or affect pollinator behavior.

One other, unavoidable drawback, notwithstanding Minnaar’s clever microscope setup, is the sheer labor of counting and checking the glowing pollen grains to amass experimental data. That's a task likely to while away the hours of grad students for years to come, irrespective of the technique used to label the grains. “I think I've probably counted more than a hundred thousand pollen grains these last three years,” Minnaar said.

Source: British Ecological Society

https://www.osa-opn.org/home/newsroom/2019/february/quantum_dots_track_pollinators/

Biologists Identify Honeybee 'Clean' Genes Known For Improving Survival

PHYS.org York University February 15, 2019

Credit: CC0 Public Domain

Credit: CC0 Public Domain

The key to breeding disease-resistant honeybees could lie in a group of genes—known for controlling hygienic behaviour—that enable colonies to limit the spread of harmful mites and bacteria, according to genomics research conducted at York University.

Some worker honeybees detect and remove sick and dead larvae and pupae from their colonies. This hygienic behaviour, which has a strong genetic component, is known to improve the colony's chance of survival. The researchers narrowed in on the "clean" genes that influence this behaviour to understand the evolution of this unique trait.

The finding, published today in the journal Genome Biology and Evolution, could lead to a new technique for use in selective breeding programs around the world to enhance the health of honeybees.

"Social immunity is a really important trait that beekeepers try to select in order to breed healthier colonies," said Professor Amro Zayed, a bee genomics expert in the Department of Biology, Faculty of Science. "Instead of spending a lot of time in the field measuring the hygienic behaviour of colonies, we can now try breeding bees with these genetic mutations that predict hygienic behaviour."

Statistics Canada estimates that honeybee pollination contributes between $3.15 to $4.39 billion per year to the Canadian economy including some of Canada's most lucrative crops like apples, blueberries and canola. In Canada, and around the world, beekeepers have experienced higher than normal colony losses. Last winter, Canadian beekeepers lost up to 33 per cent of their colonies.

"This study opens the door to using genomics to breed healthier and disease-resistant colonies that have higher social immunity," explained Zayed. "This is of huge importance to the greater community of geneticists who are interested in understanding the genetics of this novel trait."

Zayed worked on the study with 13 bee biologists from York University, University of British Columbia, University of Manitoba, and Agriculture and Agri-Food Canada.

In the study, the biologists sequenced the genomes of three honeybee populations; two of them bred to express highly hygienic behaviour and a third population with typical hygiene. Brock Harpur, Zayed's former doctoral student who is now an assistant professor at Purdue University's Department of Entomology, examined the genomes of bees from each of these three populations and looked for areas that differ between the unhygienic and hygienic bees. Harpur pinpointed at least 73 genes that likely control this hygienic trait.

"Now that we have identified these candidate genes, we can look for the mechanisms of hygienic behavior and begin to develop tools for beekeepers to breed healthier colonies," explained Harpur.

The biologists are planning to pilot a marker-assisted breeding program for hygienic behaviour, in which bees are selected for breeding based solely on their genetic information.

"We think there is a lot of potential here of breeding disease-resistant colonies with a simple genetic test," said Zayed.

Explore further: New genetic test will improve biosecurity of honey bees around the globe

More information: Brock A Harpur et al, Integrative Genomics Reveals the Genetics and Evolution of the Honey Bee's Social Immune System, Genome Biology and Evolution (2019). DOI: 10.1093/gbe/evz018

Provided by: York University

https://phys.org/news/2019-02-biologists-honeybee-genes-survival.html#jCp

Bees Have Brains for Basic Maths: Study

RMIT University By Gosia Kaszubska February 7, 2019

Researchers have found bees can do basic mathematics, in a discovery that expands our understanding of the relationship between brain size and brain power.

Building on their finding that honeybees can understand the concept of zero, Australian and French researchers set out to test whether bees could perform arithmetic operations like addition and subtraction.

Solving maths problems requires a sophisticated level of cognition, involving the complex mental management of numbers, long-term rules and short term working memory.

The revelation that even the miniature brain of a honeybee can grasp basic mathematical operations has implications for the future development of Artificial Intelligence, particularly in improving rapid learning.

Led by researchers from RMIT University in Melbourne, Australia, the new study showed bees can be taught to recognise colours as symbolic representations for addition and subtraction, and that they can use this information to solve arithmetic problems.

RMIT’s Associate Professor Adrian Dyer said numerical operations like addition and subtraction are complex because they require two levels of processing.

“You need to be able to hold the rules around adding and subtracting in your long-term memory, while mentally manipulating a set of given numbers in your short-term memory,” Dyer said.

“On top of this, our bees also used their short-term memories to solve arithmetic problems, as they learned to recognise plus or minus as abstract concepts rather than being given visual aids.

“Our findings suggest that advanced numerical cognition may be found much more widely in nature among non-human animals than previously suspected.

“If maths doesn’t require a massive brain, there might also be new ways for us to incorporate interactions of both long-term rules and working memory into designs to improve rapid AI learning of new problems.”

There is considerable debate around whether animals know or can learn complex number skills.

Many species can understand the difference between quantities and use this to forage, make decisions and solve problems. But numerical cognition, such as exact number and arithmetic operations, requires a more sophisticated level of processing.

Previous studies have shown some primates, birds, babies and even spiders can add and/or subtract. The new research, published today in Science Advances, adds bees to that list. 

A school for bees? How the honeybees were trained

The experiment, conducted by PhD researcher Scarlett Howard in the Bio Inspired Digital Sensing-Lab (BIDS-Lab) at RMIT, involved training individual honeybees to visit a Y-shaped maze.

The bees received a reward of sugar water when they made a correct choice in the maze, and received a bitter-tasting quinine solution if the choice was incorrect.

Honeybees will go back to a place if the location provides a good source of food, so the bees returned repeatedly to the experimental set-up to collect nutrition and continue learning.

When a bee flew into the entrance of the maze they would see a set of elements, between 1 to 5 shapes. The shapes were either blue, which meant the bee had to add, or yellow, which meant the bee had to subtract.

After viewing the initial number, the bee would fly through a hole into a decision chamber where it could choose to fly to the left or right side of the maze.

One side had an incorrect solution to the problem and the other side had the correct solution of either plus or minus one. The correct answer was changed randomly throughout the experiment to avoid bees learning to visit just one side of the maze.

At the beginning of the experiment, bees made random choices until they could work out how to solve the problem. Eventually, over 100 learning trials that took 4 to 7 hours, bees learned that blue meant +1, while yellow meant -1. The bees could then apply the rules to new numbers.

Scarlett Howard said the ability to do basic maths has been vital in the flourishing of human societies historically, with evidence that the Egyptians and Babylonians used arithmetic around 2000BC.

“These days, we learn as children that a plus symbol means you need to add two or more quantities, while a minus symbol means you subtract,” she said.

“Our findings show that the complex understanding of maths symbols as a language is something that many brains can probably achieve, and helps explain how many human cultures independently developed numeracy skills.”

The research, with collaborators from University of Toulouse and the ARC Centre of Excellence for Nanoscale Biophotonics at RMIT, is published today ("Numerical cognition in honeybees enables addition and subtraction", Science Advances, DOI 10.1126/sciadv.aav0961).

Video: Kiralee Greenhalgh

https://www.rmit.edu.au/news/all-news/2019/feb/bees-brains-maths

Culprit Found For Honeybee Deaths In California Almond Groves

PHYS.ORG   By Misti Crane     February 4, 2019

Credit: CC0 Public Domain

Credit: CC0 Public Domain

It's about time for the annual mass migration of honeybees to California, and new research is helping lower the chances the pollinators and their offspring will die while they're visiting the West Coast.

Each winter, professional beekeepers from around the nation stack hive upon hive on trucks destined for the Golden State, where February coaxes forward the sweet-smelling, pink and white blossoms of the Central Valley's almond trees.

Almond growers rent upwards of 1.5 million colonies of honeybees a year, at a cost of around $300 million. Without the bees, there would be no almonds, and there are nowhere near enough native bees to take up the task of pollinating the trees responsible for more than 80 percent of the world's almonds. The trouble was, bees and larvae were dying while in California, and nobody was sure exactly why. The problem started in adults only, and beekeepers were most worried about loss of queens.

Then in 2014, about 80,000 colonies—about 5 percent of bees brought in for pollination—experienced adult bee deaths or a dead and deformed brood. Some entire colonies died.

With support from the Almond Board of California, an industry service agency, bee expert Reed Johnson of The Ohio State University took up the task of figuring out what was happening. Results from his earlier research had shown that some insecticides thought safe for bees were impacting larvae. Building on that, Johnson undertook a new study, newly published in the journal Insects, that details how combinations of insecticides and fungicides typically deemed individually "safe" for honeybees turn into lethal cocktails when mixed.

Johnson, an associate professor of entomology, and his study co-authors were able to identify the chemicals commonly used in the almond groves during bloom because of California's robust and detailed system for tracking pesticide applications. Then, in a laboratory in Ohio, they tested combinations of these chemicals on honeybees and larvae.

In the most extreme cases, combinations decreased the survival of larvae by more than 60 percent when compared to a control group of larvae unexposed to fungicides and insecticides.

"Fungicides, often needed for crop protection, are routinely used during almond bloom, but in many cases growers were also adding insecticides to the mix. Our research shows that some combinations are deadly to the bees, and the simplest thing is to just take the insecticide out of the equation during almond bloom," he said.

"It just doesn't make any sense to use an insecticide when you have 80 percent of the nation's honeybees sitting there exposed to it."

The recommendation is already catching on and has been promoted through a wide array of presentations by almond industry leaders, beekeepers and other experts and has been included in the Almond Board's honeybee management practices. Many almond growers are rethinking their previous practices and are backing off insecticide use during almond bloom, Johnson said.

That's good news for bees, and doesn't appear to be harming the crops either, he said, because there are better opportunities to control problematic insects when almonds are not in bloom.

"I was surprised—even the experts in California were surprised—that they were using insecticides during pollination," Johnson said.

While these products were considered "bee-safe," that was based on tests with adult bees that hadn't looked into the impact they had on larvae.

"I think it was a situation where it wasn't disallowed. The products were thought to be bee-safe and you've got to spray a fungicide during bloom anyway, so why not put an insecticide in the tank, too?"

Insecticides are fairly inexpensive, but the process of spraying is labor-intensive, so growers choosing to double up may have been looking to maximize their investment, he said.

"The thing is, growers were using these insecticides to control a damaging insect—the peach twig borer—during this period, but they have other opportunities to do that before the bees enter the almond orchards or after they are gone," Johnson said.

This research could open the door to more study of fungicide and pesticide use on other bee-dependent crops, including pumpkins and cucumbers, Johnson said.

Explore further: Almond-crop fungicides a threat to honey bees

More information: Andrea Wade et al, Combined Toxicity of Insecticides and Fungicides Applied to California Almond Orchards to Honey Bee Larvae and Adults, Insects (2019). DOI: 10.3390/insects10010020

Provided by: The Ohio State University

https://phys.org/news/2019-02-culprit-honeybee-deaths-california-almond.html

Varroa Mites Feed On The Fat Bodies Of Honey Bees, Not The Hemolymph. This Is Important!

Catch The Buzz By Dennis O’Brien January 30, 2019

cross section of honey bee abdomen.jpg

An image showing a cross section of a varroa mite feeding on a honey bee’s abdominal cavity is one of several ARS microscopy images changing what we know about how mites damage honey bees.

Research by scientists at the Agricultural Research Service (ARS) and the University of Maryland released today sheds new light — and reverses decades of scientific dogma — regarding a honey bee pest (Varroa destructor) that is considered the greatest single driver of the global honey bee colony losses. Managed honey bee colonies add at least $15 billion to the value of U.S. agriculture each year through increased yields and superior quality harvests.

The microscopy images are part of a major study showing that the Varroa mite (Varroa destructor) feeds on the honey bee’s fat body tissue (an organ similar to the human liver) rather than on its “blood,” (or hemolymph). This discovery holds broad implications for controlling the pest in honey bee colonies.

The study was published on-line Jan. 15 and in today’s print edition of the Proceedings of the National Academy of Sciences. An image produced by the ARS Electron and Confocal Microscopy Unit in Beltsville, Maryland is on the cover of today’s journal.

Varroa mites have been widely thought to feed on the hemolymph, of honey bees (Apis mellifera) because of studies conducted in the 1970’s which used outdated technology. But today’s collaborative study, by University of Maryland and ARS researchers at the ARS Electron and Confocal Microscopy Unit, offers proof of the mite’s true feeding behavior. Through the use of electron microscopy, the researchers were able to locate feeding wounds on the bee caused by the mites, which were located directly above the bee’s fat body tissue. The images represent the first direct evidence that Varroa mites feed on adult bees, not just the larvae and pupae.

In addition, University of Maryland researchers conducted feeding studies and found that Varroa mites that were fed a diet of fat body tissue survived significantly longer and produced more eggs than mites fed hemolymph. The results show, mites fed a hemolymph-only diet were comparable to those that were starved. Thus, proving conclusively that the Varroa mite feeds primarily on the fat body consumed from bees.

The results are expected to help scientists develop more effective pesticides and other treatments to help bees cope with a mite known to spread at least five viruses. They also help explain why Varroa mites have such detrimental effects on honey bees, weakening their immune systems, and making it harder for them to store protein from pollen and survive through the winter.

The study was part of the Ph.D. thesis of Samuel D. Ramsey from the University of Maryland and was conducted in collaboration with ARS researchers and study co-authors Gary Bauchan, Connor Gulbronson, Joseph Mowery, and Ronald Ochoa.

The study can be found here.

The Agricultural Research Service is the U.S. Department of Agriculture’s chief scientific in-house research agency. Daily, ARS focuses on solutions to agricultural problems affecting America. Each dollar invested in agricultural research results in $20 of economic impact.

Catch The Buzz: Varroa mites feed on the fat bodies of honey bees

Also see: https://www.losangelescountybeekeepers.com/blog/2019/1/15/honey-bee-parasites-feed-on-fatty-organs-not-blood

Bees Can Learn the Difference Between European And Australian Indigenous Art Styles In A Single Afternoon

PHYS.ORG By Andrew Barron January 29, 2019

A painting titled The Bridge Over the Waterlily Pond by Claude Monet. Credit:  AAP/National Gallery of Victoria

A painting titled The Bridge Over the Waterlily Pond by Claude Monet. Credit: AAP/National Gallery of Victoria

We've known for a while that honey bees are smart cookies. They have excellent navigation skills, they communicate symbolically through dance, and they're the only insects that have been shown to learn abstract concepts.

Honey bees might also add the title of art connoisseur to their box of tricks. In part one of ABC Catalyst's The Great Australian Bee Challenge, we see honey bees learning to tell the difference between European and Australian Indigenous art in just one afternoon.

Does this mean honey bees are more cultured than we are?

Perhaps not, but the experiment certainly shows just how quickly honey bees can learn to process very complex information.

How the experiment worked

Bees were shown four different paintings by the French impressionist artist Claude Monet, and four paintings by Australian Indigenous artist Noŋgirrŋa Marawili.

At the centre of each of the paintings was placed a small blue dot. To make the difference between the artists meaningful to the honey bees, every time they landed on the blue dot on a Marawili painting they found a minute drop of sugar water. Every time they visited the blue dot on a Monet painting, however, they found a drop of dilute quinine. The quinine isn't harmful, but it does taste bitter.

Lightning in the Rock by Noŋgirrŋa Marawili won the Bark Painting Award at the 2015 Telstra National Aboriginal and Torres Strait Islander Art Award. Credit:  AAP/PR Handout Image

Lightning in the Rock by Noŋgirrŋa Marawili won the Bark Painting Award at the 2015 Telstra National Aboriginal and Torres Strait Islander Art Award. Credit: AAP/PR Handout Image

Having experienced each of the Monet and Marawili paintings the bees were given a test. They were shown paintings by the two artists that they had never seen before. Could they tell the difference between a Marawili and a Monet?

All the trained bees clearly directed their attention to the Marawili paintings.

This experiment was a recreation of a study first conducted by Dr. Judith Reinhard's team at the University of Queensland. In the original study, Reinhard was able to train bees to tell the difference between paintings by Monet and Picasso.

Bees are quick to learn

This kind of work does not show bees have a sense of artistic style, but it does show how good they are at learning and classifying visual information.

Different artists – be they Marawili, Monet or Picasso – tend to prefer different forms of composition and structure, different tones and different pallets in their art. We describe this as their distinctive style. These styles are recognisable to us, even if most of us would be hard pressed to describe exactly what makes a Marawili different from a Monet.

When the honey bees were trained on the paintings, every Monet they visited was a bitter experience, while every Marawili was sweet. This motivated the bees to learn whatever differences best distinguished the set of Marawili paintings from the set of Monets.

(NOTE: The video is currently unavailable.)

Bee colour vision is excellent, if different from ours. Bees can see ultraviolet wavelengths of light, but not red. Bees can pick up structure and edges in paintings by zipping quickly back and forth in front of them to detect abrupt changes in the brightness of an image.

In our experiment, bees could detect enough differences between the Marawili and Monet paintings to learn to tell them apart. The bees were not memorising the paintings; instead they were learning whatever information best distinguished a Monet from a Marawili. They could then maximise their collection of sugar, and avoid any bitter surprises.

Learning the visual differences between one set of Monet and Marawili paintings was enough for the bees to correctly choose between Monet and Marawili paintings they had never seen before.

Similarities between art and flowers

This experiment taps into a highly evolved honey bee skill. Bees did not evolve to differentiate between artists, but their survival depends on learning to tell which flowers are most likely to offer the best pollen and nectar they need to feed their hive.

Because of this, bees have evolved the ability to very quickly process complex and subtle visual information. These learning skills are on display when bees forage on flowers. Bees quickly learn to pick up on the subtlest distinction between fresh and older flowers, be it colour, odour or texture, which can betray the blooms that are most likely to contain a drop of nectar.

Honey bees break any stereotypes we may have that insects are dumb, instinct-driven animals. They have an intelligence that is very different from ours, but one that has evolved to be fit for the task of a bee doing what a bee has to do.

It is hard not to admire such clever and discriminating creatures.

Explore further: To bee an art critic, choosing between Picasso and Monet

Provided by: The Conversation

Read more at: https://phys.org/news/2019-01-bees-difference-european-australian-indigenous.html#jCp

Honey Bee Parasites Feed on Fatty Organs, Not Blood

Phys.org University of Maryland January 14, 2019

In this electron micrograph, a parasitic mite,  Varroa destructor , is wedged between the abdominal plates of a honey bee's exoskeleton. Credit: UMD/USDA/PNAS

In this electron micrograph, a parasitic mite, Varroa destructor, is wedged between the abdominal plates of a honey bee's exoskeleton. Credit: UMD/USDA/PNAS

Honey bee colonies around the world are at risk from a variety of threats, including pesticides, diseases, poor nutrition and habitat loss. Recent research suggests that one threat stands well above the others: a parasitic mite, Varroa destructor, which specializes in attacking honey bees.

For decades, researchers have assumed that varroa mites feed on blood, like many of their mite and tick cousins. But new University of Maryland-led research suggests that varroa mites instead have a voracious appetite for a honey bee organ called the fat body, which serves many of the same vital functions carried out by the human liver, while also storing food and contributing to bees' immune systems.

The research, published in the Proceedings of the National Academy of Sciences on January 14, 2019, could transform researchers' understanding of the primary threats to honey bees while pointing the way toward more effective mite treatments in the future.

"Bee researchers often refer to three Ps: parasites, pesticides and poor nutrition. Many studies have shown that varroa is the biggest issue. But when compromised by varroa, colonies are also more susceptible to the other two," said UMD alumnus Samuel Ramsey (Ph.D. '18, entomology), the lead author of the paper. "Now that we know that the fat body is varroa's target, this connection is now much more obvious. Losing fat body tissue impairs a bee's ability to detoxify pesticides and robs them of vital food stores. The fat body is absolutely essential to honey bee survival."

In addition to breaking down toxins and storing nutrients, honey bee fat bodies produce antioxidants and help to manage the immune system. The fatty organs also play an important role in the process of metamorphosis, regulating the timing and activity of key hormones. Fat bodies also produce the wax that covers parts of bees' exoskeletons, keeping water in and diseases out.

According to Ramsey, the assumption that varroa mites consume honey bee blood (more accurately called hemolymph in insects) has persisted since the first paper on the topic was published in the 1960s. Because this paper was written in Russian, Ramsey said, many researchers opted to cite the first English-language papers that cited the original study.

In this cross-section of a honey bee's abdomen, a parasitic varroa mite (orange) can be seen lodged between the bee's abdominal plates, where the mite feeds on honey bee fat body tissue. Credit: UMD/USDA/PNAS

In this cross-section of a honey bee's abdomen, a parasitic varroa mite (orange) can be seen lodged between the bee's abdominal plates, where the mite feeds on honey bee fat body tissue. Credit: UMD/USDA/PNAS

"The initial work was only sufficient to show the total volume of a meal consumed by a mite," Ramsey added. "It can be a lot easier to cite a recent summary instead of the original work. Had the first paper been read more widely, many folks might have questioned these assumptions sooner."

Ramsey noted several observations that led him to question whether varroa mites were feeding on something other than hemolymph. First, insect hemolymph is very low in nutrients. To grow and reproduce at the rates they do, varroa mites would need to consume far more hemolymph than they would be able to acquire from a single bee.

Second, varroa mites' excrement is very dry—contrary to what one would expect from an entirely liquid blood diet. Lastly, varroa mites' mouthparts appear to be adapted for digesting soft tissues with enzymes then consuming the resulting mush. By contrast, blood-feeding mites have very different mouthparts, specifically adapted for piercing membranes and sucking fluid.

The first and most straightforward experiment Ramsey and his collaborators performed was to observe where on the bees' bodies the varroa mites tended to attach themselves for feeding. If the mites grabbed on to random locations, Ramsey reasoned, that would suggest that they were in fact feeding on hemolymph, which is distributed evenly throughout the body. On the other hand, if they had a preferred site on the body, that could provide an important clue to their preferred meal.

"When they feed on immature bees, mites will eat anywhere. But in adult bees, we found a very strong preference for the underside of the bees' abdomen," Ramsey said. "More than 90 percent of mites we found on adults fed there. As it happens, fat body tissue is spread throughout the bodies of immature bees. As the bees mature, the tissue migrates to the underside of the abdomen. The connection was hard to ignore, but we needed more evidence."

Ramsey and his team then directly imaged the wound sites where varroa mites gnawed on the bees' abdomens. Using a technique called freeze fracturing, the researchers used liquid nitrogen to freeze the mites and their bee hosts, essentially taking a physical "snapshot" of the mites' feeding habits in action. Using powerful scanning electron microscopes to visualize the wound sites, Ramsey saw clear evidence that the mites were feeding on fat body tissue.

This microscopic image shows a varroa mite that has consumed honey bee fat body tissue tagged with Nile red, a fat-soluble fluorescent dye. Observing this red fluorescence in the mites' digestive systems helped researchers determine that varroa mites feed on honey bee fat body tissue--not blood, as previously assumed. Credit: UMD/USDA/ PNAS

This microscopic image shows a varroa mite that has consumed honey bee fat body tissue tagged with Nile red, a fat-soluble fluorescent dye. Observing this red fluorescence in the mites' digestive systems helped researchers determine that varroa mites feed on honey bee fat body tissue--not blood, as previously assumed. Credit: UMD/USDA/PNAS

"The images gave us an excellent view into the wound sites and what the mites' mouthparts were doing," Ramsey said. "We could see digested pieces of fat body cells. The mites were turning the bees into 'cream of honey bee soup.' An organism the size of a bee's face is climbing on and eating an organ. It's scary stuff. But we couldn't yet verify that blood wasn't also being consumed."

To further shore up their case, Ramsey and his colleagues fed bees with one of two fluorescent dyes: uranine, a water-soluble dye that glows yellow, and Nile red, a fat-soluble dye that glows red. If the mites were consuming hemolymph, Ramsey expected to see a bright yellow glow in the mites' bellies after feeding. If they were feeding on fat bodies, on the other hand, Ramsey predicted a telltale red glow.

"When we saw the first mite's gut, it was glowing bright red like the sun. This was proof positive that the fat body was being consumed," Ramsey said. "We've been talking about these mites like they're vampires, but they're not. They're more like werewolves. We've been trying to drive a stake through them, but turns out we needed a silver bullet."

To drive the proverbial final nail into the coffin of the idea that mites feed on hemolymph, Ramsey performed one last experiment. First, he painstakingly perfected the ability to raise varroa mites on an artificial dietary regimen—hardly an easy task for a parasite that prefers meals from a live host. Then, he fed them diets composed of hemolymph or fat body tissue, with a few mixtures of the two for good measure.

The results were striking: mites fed a diet of pure hemolymph starved, while those fed fat body tissue thrived and even produced eggs.

"These results have the potential to revolutionize our understanding of the damage done to bees by mites," said Dennis vanEngelsdorp, a professor of entomology at UMD and a co-author of the study, who also served as Ramsey's advisor. "Fat bodies serve so many crucial functions for bees. It makes so much more sense now to see how the harm to individual bees plays out in the ways that we already know varroa does damage to honey bee colonies. Importantly, it also opens up so many new opportunities for more effective treatments and targeted approaches to control mites."

Read more at: https://phys.org/news/2019-01-honey-bee-parasites-fatty-blood.html#jCp

More information: Samuel D. Ramsey el al., "Varroa destructor feeds primarily on honey bee fat body tissue and not hemolymph," PNAS (2018). www.pnas.org/cgi/doi/10.1073/pnas.1818371116 

Journal reference: Proceedings of the National Academy of Sciences 

Provided by: University of Maryland

Finnish Scientists Develop Edible Insect Vaccine To Save Bees

DOGO News By Ariel Kim  January 10, 2019

European honey bee extracts nectar from an Aster flower (Credit: John Severns/ Wikimedia Commons/Public Domain)

European honey bee extracts nectar from an Aster flower (Credit: John Severns/ Wikimedia Commons/Public Domain)

In addition to providing us with delicious honey, the hardworking honey bees also pollinate about a third of food crops and almost 90 percent of wild grasses, like alfalfa, used to feed livestock. Hence, it is not surprising that their declining population, caused by climate change, habitat loss, and deadly microbial diseases, has researchers scrambling to find ways to protect the vulnerable insects, which are so crucial to our existence. Now, scientists from the University of Helsinki in Finland have found a way to help honey bees fight off infectious diseases with a sweet, edible vaccine!

Vaccinating non-humans is not a novel idea. Domesticated dogs and cats have been inoculatedagainst rabies, Lyme disease, and even the flu for many years. However, using them to protect insects has never been considered possible. That’s because vaccinations entail injecting a dead, or weakened, version of the virus into the body and allowing the immune system to create antibodies to fend off the disease. Since insects do not possess antibodies, they lack a "memory" for fighting infections and therefore do not benefit from traditional vaccinations.

Some of the foods that could be affected if honey bees disappear (Credit: Specialtyfood.com)

Some of the foods that could be affected if honey bees disappear (Credit: Specialtyfood.com)

Dalial Freitak, a biologist at the University of Helsinki, came up with the idea of an edible insect vaccine in 2014, after observing that when a moth was fed certain bacteria, it was able to pass on immunity to its offspring. Meanwhile, her colleague, Heli Salmela, had noticed that vitellogenin, a bee protein, appeared to have a similar effect to invasive bacteria in bees.

"So they could actually convey something by eating. I just didn't know what the mechanism was. At the time, as I started my post-doc work in Helsinki, I met with Heli Salmela, who was working on honeybees and a protein called vitellogenin. I heard her talk, and I was like: OK, I could make a bet that it is your protein that takes my signal from one generation to another. We started to collaborate, got funding from the Academy of Finland, and that was actually the beginning of PrimeBEE," Freitak explains.

How the American foulbrood bacteria invade and decimate hives (Credit: Current Opinion in Insect Science/Sciencedirect.com)

How the American foulbrood bacteria invade and decimate hives (Credit: Current Opinion in Insect Science/Sciencedirect.com)

The first PrimeBEE vaccine, which is still undergoing safety tests, aims to protect honeybees against American foulbrood, or AFB, an infectious disease which affects bee colonies worldwide. The harmful bacteria, introduced to the hive by nurse bees, feed on larvae and generate spores which spread and infect the entire hive. “It's a death sentence for a hive or colony to be diagnosed with the disease,” says Toni Burnham, president of the D.C. Beekeepers Alliance in Washington.

The researchers, who unveiled their findings on October 18, 2018, say the vaccine teaches honeybees to identify harmful diseases, similar to how antibodies function in humans and animals. They explain, "When the queen bee eats something with pathogens in it, the pathogen signature molecules are bound by vitellogenin. Vitellogenin then carries these signature molecules into the queen's eggs, where they work as inducers for future immune responses." The researchers believe that once the first PrimeBEE vaccine is perfected, defense against other pathogens will be easy to create.

“We need to help honey bees, absolutely. Even improving their life a little would have a big effect on the global scale. Of course, the honey bees have many other problems as well: pesticides, habitat loss and so on, but diseases come hand in hand with these life-quality problems,” Freitak says. “If we can help honey bees to be healthier and if we can save even a small part of the bee population with this invention, I think we have done our good deed and saved the world a little bit.”

Resources: Smithsonianmag.com, NPR.org, mnn.com.

Finding An Elusive Mutation That Turns Altruism Into Selfish Behavior Among Honeybees

Phys.org    From Oxford University Press     January 8, 2019

A. m. capensis pseudoqueens  (black bees) among  A. m. scutellata  host workers (yellow bees). Credit: Picture taken by Mike Allsopp

A. m. capensis pseudoqueens (black bees) among A. m. scutellata host workers (yellow bees). Credit: Picture taken by Mike Allsopp

Among the social insects, bees have developed a strong and rich social network, where busy worker bees tend to the queen, who in turn, controls reproduction for the benefit of the hive.

But the South African Cape honey bee (Apis mellifera capensis) can flout these rules. In a process of genetic trickery called thelytoky syndrome, worker bee females ignore the queen's orders and begin to reproduce on their own.

Scientists, in their own altruistic effort to protect the Cape honey bees from a recent devastating blight, transferred the Cape honey bees to a northeastern region—-only to see the Cape bees wreak havoc among colonies of the neighboring honey bee subspecies A. m. scutellata.

The A. capensis bees turned from altruistic workers to the guests who would not leave—-becoming social parasites that forage on their own into foreign colonies, reproducing an army of loyal workers, stealing all the honey, and eventually, dethroning the queen and taking over the host colony.

This type of behavior, despite making for bad neighbors, makes a lot of evolutionary sense. If the queen is lost, then the thelytoky syndrome at one point must have first kicked in as a life raft to save the colony. But if this is the case, why hasn't it become a more widespread phenomenon for other bee species?

Recently, scientists have combed through bee genomes to narrow down the genetics behind thelytoky, and linked these to candidate genes in the past few years—-but to date, the master genetic switch has not been found.

Now, for the first time, a group led by Denise Aumer and Eckart Stolle, working in the lab of Robin Moritz at the Martin-Luther-Universität Halle-Wittenberg's Institute of Biology, have finally found the root cause responsible for thelytoky. The findings were published in the advanced online edition of Molecular Biology and Evolution.

"Uncovering the genetic architecture underlying thelytoky is a big step towards understanding this mode of reproduction, not only in the Cape honeybee, but also in other insect species in general (e.g. many invasive ants reproduce in a very similar fashion)," said Stolle. "After having worked on the topic for so many years with so much efforts by our colleagues and us to add pieces to the puzzle and also with the one or other dead end, it is a huge accomplishment for us to have come to this point."

By comparing the genomes of Cape honeybees which produce diploid female offspring (thelytoky) with those producing haploid male offspring (arrhenotoky, i.e. the expected mode of reproduction), they identified a candidate gene located on chromosome one, LOC409096, and proposed to call it Thelytoky (Th), as the major regulator of the selfish worker bee reproduction. Thelytoky encodes a receptor protein with a transmembrane helix and a signal peptide at the extracellular N-terminus, indicating that it is linked to a secretory pathway.

A. m. capensis pseudoqueen  (bee with white tag on thorax) eliciting retinue behavior in the surrounding  A. m. scutellata  host bees. Credit: Picture taken by Mike Allsopp.

A. m. capensis pseudoqueen (bee with white tag on thorax) eliciting retinue behavior in the surrounding A. m. scutellata host bees. Credit: Picture taken by Mike Allsopp.

Specifically, a single mutational substitution in exon 7 of Thelytoky causes a change from the polar amino acid threonine to the non-polar amino acid isoleucine in the protein sequence, leading to substantial structural modifications and likely functional consequences. In addition, they confirmed their genetic data by showing that RNA levels of Thelytoky were elevated only in the selfish bees. They also performed DNA sequencing of another honey bee population and found the same exact mutation amongst the socially parasitic lineage of the Cape honey bee, but not among workers of other honey bee subspecies.

From the study of the genetics, they determined that Cape bee selfishness exhibits a dominant inheritance pattern, which means that only one mutation that needs to be passed down to perform the selfish genetic switch.

But the genetics are a bit more complicated because it turns out that the selfish gene still needs its altruistic partner (known as the social, or arrhenotoky form of the gene).

"The genetic control of the thelytoky syndrome is regulated by a more complex genetic mechanism than previously assumed," said Aumer. "The thelytoky allele (Th) is not recessive, i.e., needing two copies of the mutated gene, but rather a dominant allele. This dominant mutation expresses the phenotype (thelytoky) when one copy of the gene is the mutated variant, and the other copy is the one variant typical for the Cape honey bee."

"But at the same time, it appears that having two copies of the mutated variant is detrimental, perhaps even lethal, while having two copies of the "regular" Cape bee variant of this genes makes them reproduce normally. Any other combination of the mutated variant with another subspecies' variant would be non-matching alleles and would result in either non-functional or fertile normally reproducing (arrhenotokous) phenotypes. Therefore, the Cape bee typical Th variant seems to complement the mutated Th variant in a way that the offspring is fertile and expresses the unique set of phenotypes referred to as thelytoky syndrome."

Because only one gene can get passed on during reproduction, the genetics not only explain why breeders, for the past 150 years, have been mostly unsuccessful with producing thelytokous workers from mating the Cape bees with others, but also why the thelytoky behavior hasn't spread into other bee populations.

Genetically, it turns out you still need a little altruism to be truly selfish. When only one is passed on from interbreeding, the effect is lost without its partner gene.

"On a broader level, the identified genetic architecture of thelytoky in honey bees may serve as a model for other eusocial species with similar thelytokous reproduction, in particular for novel ant model systems, such as Platythyrea punctata and the clonal raider ant Ooceraea biroi," wrote the authors in the Molecular Biology and Evolution publication.

And just like the striking case of malaria and hemoglobin genes in humans, the study shows how just a single change in the DNA can have such a dramatic effect on a species, or in this case, changing the behavior of a bee from a helper to a mercenary.

Read more at: https://phys.org/news/2019-01-elusive-mutation-altruism-selfish-behavior.html#jCp
Journal reference: Molecular Biology and Evolution  
Provided by: Oxford University Press

Bee Mite Arrival in Hawaii Causes Pathogen Changes in Honeybee Predators

UC Riverside By Iqbal Pittalwala January 8, 2019

bee mite arrival in Hawaii.jpg

UC Riverside-led research, done on the Big Island, shows effects of mite introduction have cascaded through entire pathogen communities

The reddish-brown varroa mite, a parasite of honeybees and accidentally introduced in the Big Island of Hawaii in 2007-08, is about the size of a pinhead. Yet, its effects there are concerning to entomologists because the mite is found nearly everywhere honeybees are present.

A team led by entomologists at the University of California, Riverside, performed a study on the Big Island and found viruses associated with the mite have spilled over into the western yellowjacket, a honeybee predator and honey raider. The result is a hidden, yet remarkable, change in the genetic diversity of viruses associated with the larger pathogen community of the mite and wasp, with repercussions yet to be understood.

Erin Wilson Rankin examines a western yellowjacket. (I. Pittalwala/UC Riverside)

Erin Wilson Rankin examines a western yellowjacket. (I. Pittalwala/UC Riverside)

“Already, we are seeing that the arrival of the varroa mite in honeybee populations in Hawaii has favored a few virulent strains,” said Erin E. Wilson Rankin, an assistant professor of entomologyand lead investigator of the study published Jan. 9 in the Proceedings of the Royal Society B. “We do not know what the effects of these strains will be. What we know is that the effects of the varroa mite have cascaded through entire communities in Hawaii and probably around the world.”

In particular, the researchers saw a loss in the diversity of deformed wing virus, or DWV, variants, resulting in new strains whose impact is hard to predict. DWV, widespread in honeybee populations globally and made up of several variants, is thought to be partly responsible for global die-off of honeybee colonies. DWV infects bumblebees and has been detected in other insects. The yellowjacket wasps can acquire this virus directly or indirectly from honeybees.

The western honey bee.

The western honey bee.

By a stroke of luck, the researchers had the benefit of studying the honeybee and yellowjacket populations on the Big Island both before and after the varroa mite was introduced there. They saw more association of honeybees with pathogens after the appearance of the mite. Indeed, some pathogens were detected in the honeybee and wasp populations only after the mite was introduced to the island.

“This is one of the first descriptions of pathogens in the western yellowjacket,” Wilson Rankin said. “Evidently, pathogens known to be associated with varroa have spread into non-bee species, despite the mite itself being a bee specialist. We suspect the spread in yellowjackets is partly due to the wasp’s propensity to prey upon bees, which is one way the wasps may be exposed to the pathogens.”

Wilson Rankin noted the pathogens are often incorrectly called “bee pathogens” because they were first found in bees. The pathogens, however, are found in a wide variety of insects.

“We are seeing entirely different predators being affected,” she said. “The mite is not vectoring viruses to the wasps. The viral spread is happening through predation and through flowers. Predators may be passing on pathogens to other species. The yellowjacket, for example, preys on both honeybees and native bees, and may explain why both bee populations are showing the same viruses.”

Wilson Rankin explained wasps have been overlooked by researchers because these arthropods do not have “warm, fuzzy, and furry connotations.”

The western yellowjacket is a honey bee predator and honey-raider.

The western yellowjacket is a honey bee predator and honey-raider.

“They look scary,” she added. “People also get stung by them. People are more afraid of wasps than bees. But our work shows we can examine the health of the arthropod community by using species other than bees. We show for the first time that a predator is being affected by a parasite that does not even infect it.”

The researchers sampled 25-45 bees and wasps for one part of the study, and then about 100 individuals, analyzed in groups, for each of the species during the period before and after the mite was introduced to the Big Island. The researchers did not study native bees, focusing instead on honeybees and yellowjacket wasps, neither of which is native to Hawaii. 

“Our findings suggest that pathogen transmission from domesticated bees, such as honeybees, may be important even for non-bee insects like the wasps we studied,” said Kevin J. Loope, the research paper’s first author, who worked as a postdoctoral scholar in the Wilson Rankin lab during the study. “The impacts may be more subtle than previously observed: we found changes in the genetic variation of viruses found in the wasps, but not changes in the amount of virus. These findings suggest we should look more broadly and in greater detail to figure out how moving domesticated bees for agriculture may influence wild populations of insects.

Loope, now a research assistant professor in the Department of Biology at Georgia Southern University, explained that finding overlap in the pathogens of yellowjacket wasps and domesticated bees also means that using pathogens to control undesirable wasp populations is risky.

“Any biological control efforts using pathogens should be carefully evaluated to prevent inadvertent harm to beneficial bees,” he said.

Kevin Loope excavates a yellowjacket nest in Volcano, Hawaii. (Jessica Purcell/UC Riverside)

Kevin Loope excavates a yellowjacket nest in Volcano, Hawaii. (Jessica Purcell/UC Riverside)

He added that the research team was surprised to find a dramatic difference in the viral genetic diversity between the wasp samples from the two periods — before and after the varroa mite was detected on the Big Island.

“We had predicted we would observe a decline in wasp viral diversity matching the decline described in honeybees in Hawaii, but we were still surprised to see this borne out in the data,” he said. “It’s not so often that you see what you’ve predicted in biology.”

Wilson Rankin and Loope were joined in the research by Philip J. Lester of Victoria University of Wellington, New Zealand; and James W. Baty of Malaghan Institute of Medical Research, New Zealand. Genetic analyses on the bee and wasp samples were performed at UCR and in New Zealand.

Wilson Rankin was supported by grants from the National Science Foundation and the Hellman Fellows Fund. Loope was supported by a postdoctoral fellowship from the National Institute of Food and Agriculture of the U.S. Department of Agriculture.

https://news.ucr.edu/articles/2019/01/08/bee-mite-arrival-hawaii-causes-pathogen-changes-honeybee-predators

New Laboratory System Allows Researchers To Probe The Secret Lives Of Queen Bees

Phys.org University of Illinois at Urbana-Champaign December 3, 2018

Researchers at the Carl R. Woese Institute for Genomic Biology at the University of Illinois used specially developed 3D-printed plastic honey combs that mimic the hive environment, in order to monitor queen egg-laying behaviors. Credit: Bee Research Facility, University of Illinois

Researchers at the Carl R. Woese Institute for Genomic Biology at the University of Illinois used specially developed 3D-printed plastic honey combs that mimic the hive environment, in order to monitor queen egg-laying behaviors. Credit: Bee Research Facility, University of Illinois

More than a decade after the identification of colony collapse disorder, a phenomenon marked by widespread loss of honey bee colonies, scientists are still working to untangle the ecologically complex problem of how to mitigate ongoing losses of honey bees and other pollinating species. One much-needed aid in this effort is more efficient ways to track specific impacts on bee health. To address this need, a group of Illinois researchers has established a laboratory-based method for tracking the fertility of honey bee queens.

Co-first authors Julia Fine and Hagai Shpigler, both postdoctoral researchers at the University of Illinois, worked with others in the laboratory of Carl R. Woese Institute for Genomic Biology Director and Swanlund Professor of Entomology Gene Robinson to establish a laboratory set-up that would mimic the key aspects of the hive environment and allow detection of egg-laying by honey bee queens living with small groups of worker bees. The resulting system, described in PLOS ONE, allowed them to explore the relationship between worker nutrition and queen fertility.

"The idea that honey bee nutrition influences colony level metrics of reproduction has been demonstrated before, but here, we examined an old story using new tools," Fine said. "We were able to get a clearer picture of how nutrition can affect the relationship between honey bee workers and queens and how this can impact the queen's egg production."

Populations of many pollinator species have been declining in the US and worldwide. Studies of factors influencing wild and managed honey bee hives have identified four main factors influencing health: parasites, pathogens, pesticides, and poor nutrition. These factors can influence one another. For example, parasites may spread pathogens, much as fleas do on people, while poor nutrition might increase the likelihood of foraging on contaminated food sources.

Egg production is a vital aspect of honey bee colony function. Queens lay eggs that hatch into the thousands of worker bees that keep the colony running, as well as males and young queens to allow the colony to propagate. But in the dark, bustling interior of a standard hive, it is challenging to monitor egg laying or to evaluate the impacts of environmental factors.

"Egg laying occurs in the darkness of a hive occupied by thousands of workers and is therefore hard to track," Shpigler said. "Queen egg laying was never studied outside of the colony; the biggest challenge was to give the queens the right conditions for continuous egg laying outside of natural conditions."

To move queen productivity successfully into the lab, the researchers focused on the essentials of their natural environment. They developed a 3-D-printed plastic honey comb that they refined to mimic what a queen would experience in the hive, which ensured that the cage environment could be carefully controlled and kept pesticide free. They also provided each queen with a small group of worker bees to feed and support the queen; this element became the inspiration for their first experiments with the new system.

"Honey bee queens only ingest food in the form of glandular secretions provided to them by their worker caretakers, and queens are not known to lay eggs without the support of their worker bees," Fine said. "The more we worked in this system, the more it became apparent that the easiest way to influence the queen was to first influence the worker bees that care for her. Once we identified this strategy, designing effective experiments became easier."

Fine, Shpigler, and their coauthors provided each group of caged bees with honey, water, and sucrose solution, but varied the source of fat and protein: some bees were fed with a paste of honey and either a low or a high amount of floral pollen, while others were fed with bee bread, a mixture of pollen, honey, and secretions produced by worker honey bees that preserve and ferment the pollen. The researchers monitored how queen egg laying behavior was influenced by the type of diet fed to the workers caring for her.

They found that when a group of workers was fed pollen paste, the queen they attended was likely to increase her egg laying more slowly in the laboratory environment than a queen attended by bee bread-fed workers. This difference was most noticeable when the lower-percentage pollen paste was used, but persisted even in bees fed the richer pollen paste.

The results affirmed the importance of nutrition to queen productivity, as well as demonstrating the potential utility of the laboratory set-up for investigating other factors affecting queen behavior and health.

"The effect of the nutrition . . . was our first successful use of the system, giving us hope for more success in the future," Shpigler said. "The results show very nicely how the honey bee colony functions as one body, with shared digestive and reproductive systems. The workers are the ones that eat the food and the effect is on the queen egg laying—the superorganism in action!"

"It's been exciting to see the kind of quantitative data that we can generate with this system using fewer resources relative to studies that use full size honey bee colonies," Fine said. "Eventually, we hope that this system can be adapted as a risk assessment tool to identify other factors that positively and negatively influence honey bee reproduction . . . there is an immediate need for a laboratory system that can be used to quantitatively assess risks to honey bee queen health and reproduction."

More information: Julia D. Fine et al, Quantifying the effects of pollen nutrition on honey bee queen egg laying with a new laboratory system, PLOS ONE (2018). DOI: 10.1371/journal.pone.0203444

Journal reference: PLoS ONE

Provided by: University of Illinois at Urbana-Champaign 

https://phys.org/news/2018-12-laboratory-probe-secret-queen-bees.html#jCp

Will Mushrooms Be Magic for Threatened Bees?

The New York Times / Opinion By Paul Stamets December 28, 2108

We might be able to save honeybees from viruses transmitted by invasive parasites without chemical treatment.

Credit: Lilli Carré

Credit: Lilli Carré

Sometime in the 1980s, microscopic mites that had been afflicting honeybees outside the United States found their way to Florida and Wisconsin and began wreaking havoc across the country. These parasites have invaded and decimated wild and domestic bee colonies. Along with other dangers facing bees, like pesticides and the loss of forage lands, the viruses these mites carry threaten the bees we rely on to pollinate many of the fruits, nuts and vegetables we eat.

This mite, Varroa destructor, injects a slew of viruses into bees, including one that causes shriveled wings, a primary factor in widespread colony collapse. Worse, these parasites have rapidly developed resistance to synthetic pesticides.

Beekeepers in the United States lost an estimated 40 percent of their colonies between April 2017 and April 2018. But we might be able to save honeybees at least from this parasitic scourge without chemical intervention. I along with scientists at Washington State University and the United States Department of Agriculture recently published in Scientific Reports, a journal from the publishers of Nature, a study that could inspire a paradigm shift in protecting bees.

Our research shows that extracts from the living mycelial tissue of common wood conk mushrooms known to have antiviral properties significantly reduced these viruses in honeybee colonies, in one field test by 45,000 times, compared to control colonies. In the field tests, we used extracts from two species of wood conks, the red reishi and the amadou. The famous “Iceman” found in a glacier in 1991 in the Alps carried amadouin a pouch 5,300 years ago. The red reishi has long been used as an immune-boosting tonic in Asia.

Our hypothesis — and that's all it is, we don't understand the mechanism behind the results — is that extracts of wood conk mushrooms strengthen immunity to viruses. More study is needed. At present, there have been no substances proved to reduce viruses in bees.

In the field study, a small amount of one of these mycelial extracts was added to the sugar water commonly fed to honeybees by beekeepers; wild bees could benefit too. I’m excited by the prospect of this research. I am a mycologist by trade — a mushroom expert — and I hope to create, with some colleagues, a nonprofit organization that could make available this mushroom extract and a bee feeder, similar to a hummingbird feeder, so that all of us can help save bees from our own backyards.

Our team is designing a bee feeder that we hope makes it possible to track bee visits and their pollen loads. Ideally, citizen scientists will upload their data to a portal to monitor progress. I estimate that millions of these feeders are needed to reverse the decline in bee populations.

Nature can repair itself with a little help from mycologists. Fungi outnumber plants by about 6 to 1; there are two million to four million fungal species, though only about 140,000 have been named so far. Our research underlines the need to save biodiversity for the discoveries to come.

These mycelial extracts might aid other species like pigs, birds and other animals. But we need more animal clinical studies to prove that this will work on a wider scale.

Mycology is an underfunded, understudied field with astonishing potential to save lives: ours and the bees.

Paul Stamets, a mycologist and owner of a gourmet mushroom company, is the author of “Mycelium Running: How Mushrooms Can Help Save the World.”

https://www.nytimes.com/2018/12/28/opinion/bees-threats-crop-loss-mushrooms.html

We Discovered More About The Honeybee 'Wake-Up Call'—And It Could Help Save Them

Phys.org By Martin Bencsik and Michael Ramsey,  The Conversation December 21, 2018

Remotely monitoring honeybee hives can help track the health of the colony. Credit: weter78/ Shutterstock

Remotely monitoring honeybee hives can help track the health of the colony. Credit: weter78/ Shutterstock

Worldwide honeybee populations are in peril – and it's a dire situation for humans. Threats from climate change, toxic pesticides, and disease have all contributed to a steep honeybee population decline since 2006. And as a third of the food we eat is a direct result of insect pollination – including by honeybees – there could be serious consequences for us if the species goes extinct.

We recently uncovered more about a well-known, important honeybee signal known as the dorso-ventral abdominal vibration (DVAV) signal. Known as the honeybee "wake-up call," this signal tells other bees to prepare for an increase in work load, particularly in relation to foraging. We developed a remote sensor which allowed us to monitor honeybee colonies without opening the hive. By understanding the frequency and strength of the DVAV signal in the hive, beekeepers and researchers might be better able to monitor the health of bee colonies worldwide.

In many countries (and in Europe in particular), the woodland habitat that honeybees require no longer exists, so the majority of honeybees only survive thanks to beekeepers, who provide boxes and hives for them to live in. As such, being able to continuously monitor honeybee colonies is essential to their survival.

Problems can arise quickly in a colony, with devastating effects. While commercial beekeepers are doing their best to monitor bee populations in hives, checking on every single hive's population is a near impossible task, as some professionals have more than 1,000 colonies to care for.

Recent research has focused on finding ways to monitor honeybee populations without having to physically open hives. This will help beekeepers better check the safety of their colonies and may help sustain honeybee populations.

A BEE DELIVERING A SERIES OF DVAV SIGNALS.

We have been particularly interested in researching the vibrations resulting from honeybee activity within hives to better understand their in-hive behaviour. By detecting and measuring the vibrations sent through the honeycomb by individual bees, we are able to study and decode the messages honeybees are sending each other.

Bee communication

The DVAV signal is one well-known form of honeybee communication which tells other bees in the hive to prepare for increased work load. This signal lasts one second and occurs when a honeybee grips a recipient bee with her front legs and rhythmically shakes her abdomen back and forth, usually 20 times per second.

Using an accelerometer sensor (which measures the rate of acceleration the bee's body vibrates) with automated recording software, we were able to continuously monitor activity in the honeybee hive. Our research found that we can pick up the DVAV signal in the hive when honeybees pass near our sensor. Knowing this allows us to refine our assessment of the health of the colony, as specific health disorders will be reflected in changes in the hive's overall DVAV activity levels.

This "wake-up call" was not previously known to produce any vibration within the honeycomb, but we now have recorded the associated waveform in outstanding detail. Additional video analysis allowed us to confirm that it was the DVAV signal our sensor was detecting. From this, we were then able to create further machine-learning software to automatically detect and log any occurrence of DVAVs from the data our sensor picked up.

A DVAV SIGNAL IS DETECTED.

We monitored this signal in three hives in the UK and France for up to 16 months. We found that the signal is very common and highly repeatable. It unexpectedly occurs more frequently at night, with a distinct decrease towards mid-afternoon – a trend that is opposite to the amplitude (strength, or loudness) of the signals. We also found that honeybees will commonly produce this signal directly onto the comb.

This, alongside other research, suggests the DVAV signal may not function only as a wake-up call. For instance, this signal might be a way for bees to probe the contents of the honeycomb in order to check the honey and pollen storage levels, or for the presence of eggs. The amplitude of the signal, which varies a lot between night and day, might indicate the context in which the message is being produced. Its nighttime enhanced frequency is both a new discovery and, presently, an amazing mystery.

This new insight into the DVAV signal will help scientists recreate it so that we can try to communicate with the bees. By driving a precise replica of DVAV signal waves into the honeycomb (something not possible before our study), researchers will be able to transmit meaningful messages to the colony. This will let them check that enhanced colony activity is achieved, and will also allow them to further understand the DVAV signal's specific functions.

Our new research builds upon the work done by Karl von Frisch who decoded the meaning of the honeybee "waggle dance". Von Frisch discovered honeybees use it to alert each other of nectar in the area, and it gives highly precise instructions on where to find it. The waggle dance is still discussed today as an example of astonishing sophistication in insect communication. The discovery also prompted a shift in our thinking about other life forms, and how they impact our lives.

With the current evidence we have about humanity's detrimental effect on Earth, it is likely that society's impact on the planet will only get worse. Despite our desire to protect endangered species, we frequently make decisions for humanity's benefit which are damaging to the environment. By highlighting another fascinating element of honeybee communication, we hope that our work will help shift humanity's thinking and make sustainability of the planet the top priority.

Explore further: Surprised honeybees give 'whooping signal' in the hive, study shows

Read more at: https://phys.org/news/2018-12-honeybee-wake-up-calland.html#jCp

Provided by: The Conversation 

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Genome Published of The Small Hive Beetle, A Major Honey Bee Parasite

Phys.org From the Department of Agriculture December 20, 2018

Small hive beetles in a honey bee colony. Credit: Agricultural Research Service-USDA

Small hive beetles in a honey bee colony. Credit: Agricultural Research Service-USDA

Beekeepers and researchers will welcome the unveiling of the small hive beetle's genome by Agricultural Research Service (ARS) scientists and their colleagues. The small hive beetle (SHB) is a major parasite problem of honey bees for which there are few effective treatments.

The SHB (Aethina tumida Murray) genome—a genome is the sum total of all an organism's DNA; a gene codes for a single protein to be built—is available at is available at https://www.ncbi.nlm.nih.gov/genome/annotation_euk/Aethina_tumida/100 and was recently published in GigaScience.

This information will provide crucial keys that should lead to better, more targeted SHB control methods, including insecticidal treatments and possibly even genetic/breeding solutions.

The SHB has a strong gene-guided system that lets the beetle detoxify many insecticides. Having the genome will allow researchers to gain a more precise understanding of these detoxification genes, so more effective choices for control treatments can be made.

"The big challenge is identifying control methods that will target SHBs but not harm honey bees," said geneticist Jay Evans, who ran the project and is also leader of the ARS Bee Research Laboratory. "One strategy is to look for insecticides that hit pathways in the genome where the SHB has few or no detoxification genes. It would be even better if an insecticide could be identified for which the honey bee has detoxification genes but that the SHB doesn't.

A native of sub-Saharan Africa, the SHB has spread to many other locations, including North America, Europe, Australia, and the Philippines. It was first found in the United States in 1996 and during the summer of 1998, the SHB was blamed for losses of more than 20,000 honey bee colonies in Florida alone.

Today, the SHB has spread throughout the United States. It is a major problem especially for queen breeders and honey production. SHBs eat everything and anything in a bee colony: pollen, brood, honey, dead adult bees and combs) and cause honey to ferment in the process. If the number of SHBs is high enough, adult bees will abscond from the hive.

One avenue to which the SHB genome has already pointed is where to look for clues for how the SHB finds beehives; what pheromones or other smells do SHBs follow to target honey bee colonies.

Although there are about 350,000 beetle species and subspecies, only seven beetle genomes, including the SHB, have been completed and published.

Completing the SHB genome takes on even more importance when you realize that among the SHB's close relatives are the destructive and invasive Asian longhorned beetle along with other sap beetles that are pests of sweet corn, tomatoes, strawberries and other fruit and vegetable crops.

The Agricultural Research Service is the U.S. Department of Agriculture's chief scientific in-house research agency. Daily, ARS focuses on solutions to agricultural problems affecting America. Each dollar invested in agricultural research results in $20 of economic impact.

Explore further: Study examines insecticide's effects on honey bees

Journal reference: GigaScience

Provided by: US Department of Agriculture

Read more at:https://phys.org/news/2018-12-genome-published-small-hive-beetle.html#jCp

The First-Ever Insect Vaccine Prime-BEE Helps Bees Stay Healthy

University of Helsinki By Elina Raukko October 31, 2018

Photo: Helsinki Innovation Services

Photo: Helsinki Innovation Services

The easily administered edible vaccine could keep pollinators safe from bacterial diseases and give invaluable support for food production worldwide.

Food and pollination services are important for everyone: humans, production animals and wildlife alike. Inventing something that guards against pollinator losses will have a tremendous impact.

PrimeBEE is the first-ever vaccine for honey bees and other pollinators. It fights severe microbial diseases that can be detrimental to pollinator communities. The invention is the fruit of research carried out by two scientists in the University of Helsinki, Dalial Freitak and Heli Salmela.

The basis of the innovation is quite simple. When the queen bee eats something with pathogens in it, the pathogen signature molecules are bound by vitellogenin. Vitellogenin then carries these signature molecules into the queen’s eggs, where they work as inducers for future immune responses.

Before this, no-one had thought that insect vaccination could be possible at all. That is because the insect immune system, although rather similar to the mammalian system, lacks one of the central mechanisms for immunological memory – antibodies.
"Now we've discovered the mechanism to show that you can actually vaccinate them. You can transfer a signal from one generation to another," researcher Dalial Freitak states.

From moths to honey bees

Dalial Freitak has been working with insects and the immune system throughout her career. Starting with moths, she noticed that if the parental generation is exposed to certain bacteria via their food, their offspring show elevated immune responses.

"So they could actually convey something by eating. I just didn't know what the mechanism was. At the time, as I started my post-doc work in Helsinki, I met with Heli Salmela, who was working on honeybees and a protein called vitellogenin. I heard her talk and I was like: OK, I could make a bet that it is your protein that takes my signal from one generation to another. We started to collaborate, got funding from the Academy of Finland, and that was actually the beginning of PrimeBEE," Dalial Freitak explains.

Fu­ture plans: vac­cin­at­ing honey bees against any mi­crobe

PrimeBEE's first aim is to develop a vaccine against American foulbrood, a bacterial disease caused by the spore-forming Paenibacillus larvae ssp. larvae. American foulbrood is the most widespread and destructive of the bee brood diseases.

"We hope that we can also develop a vaccination against other infections, such as European foulbrood and fungal diseases. We have already started initial tests. The plan is to be able to vaccinate against any microbe".

At the same time as the vaccine’s safety is being tested in the laboratory, the project is being accelerated towards launching a business. Sara Kangaspeska, Head of Innovation at Helsinki Innovation Services HIS, has been involved with the project right from the start.

"Commercialisation has been a target for the project from the beginning. It all started when Dalial and Heli contacted us. They first filed an invention disclosure to us describing the key findings of the research. They then met with us to discuss the case in detail and since then, the University has proceeded towards filing a patent application that reached the national phase in January 2018.”

A big step forward was to apply for dedicated commercialisation funding from Business Finland, a process which is coordinated and supported by HIS. HIS assigns a case owner for each innovation or commercialisation project, who guides the project from A to Z and works hands-on with the researcher team.

“HIS core activities are to identify and support commercialisation opportunities stemming from the University of Helsinki research. PrimeBEE is a great example of an innovation maturing towards a true commercial seed ready to be spun-out from the University soon. It has been inspiring and rewarding to work together with the researchers towards a common goal,” says Sara Kangaspeska.

The latest news is that based on the PrimeBEE invention, a spinout company called Dalan Animal Health will be founded in the very near future.

"We need to help honey bees, absolutely. Even improving their life a little would have a big effect on the global scale. Of course, the honeybees have many other problems as well: pesticides, habitat loss and so on, but diseases come hand in hand with these life-quality problems. If we can help honey bees to be healthier and if we can save even a small part of the bee population with this invention, I think we have done our good deed and saved the world a little bit," Dalial Freitak asserts.

Organismal and Evolutionary Biology Research Programme
Centre of Excellence in Biological Interactions

In short:

Honeybees are central for providing food for humans, production animals and wildlife by pollinating more than 80% of the plant species in the world. Recent years have witnessed a decline in pollinator numbers worldwide, threatening the food and fodder production. Among other reasons, emerging diseases are raging havoc in bee populations.

PrimeBEE is the first-ever insect vaccine, which is based on the trans-generational immune priming mechanism, allowing immunological signals to be passed from queen bees to her offspring. PrimeBEE insect vaccine is easily administered as it can be added to the queen bee's food. The queen then conveys the disease resistance to its progeny.

JOIN US: We are now looking for investors and funding to help save a little bit of the world! CON­TACT IN­FOR­MA­TION: Dr. Dalial Freitak, Dr. Annette Kleiser, and Dr. Franziska Dickel

PrimeBee website

https://www.helsinki.fi/en/news/sustainability-news/the-first-ever-insect-vaccine-primebee-helps-bees-stay-healthy

Researchers Discover Honeybee Gynandromorph With Two Fathers And No Mother

Phys.org By Bob Yirka November 28, 2018

Credit CCO Public Domain

Credit CCO Public Domain

A team of researchers at the University of Sydney has discovered a honeybee gynandromorph with two fathers and no mother—the first ever of its kind observed in nature. In their paper published in the journal Biology Letters, the group describes their study of honeybee gynandromorphs and what they found.

Honeybees are haplodiploid creatures—which means that females develop from fertilized eggs, while males arise from eggs that are not fertilized. Because of this, honeybees are susceptible to producing gynandromorphs, creatures with both male and female tissue. This is different from hermaphrodites, which are one gender but have sex organs of both male and female. In this new effort, the researchers sought to learn more about the nature of gynandromorphs and what causes them.

Prior research has suggested the likelihood that rare mutations result in the creation of gynandromorphs. The mechanics of the process are due to multiple males mating with a queen, resulting in more than a single sperm fertilizing an egg. To learn more about the genetics involved, the researchers captured 11 gynandromorph honeybees, all from a single colony, and studied their genome.

The genetic makeup of the gynandromorphs revealed that five of them had normal ovaries, while three had ovaries that were similar to those of the queen. Also, one of them had normal male sex organs while two had only partial sex organs. The researchers also found that out of the 11 gynandromorphs tested, nine had either two or three fathers. And remarkably, one had two fathers but no mother—a development that could only have occurred through the development of sperm fusion.

The researchers note that gynandromorphs confer no known evolutionary advantage for a species; thus, their development must be due to mistakes resulting in still unknown mutations. They suggest that the large number of gynandromorphs in a single hive likely means the queen carries the mutation. They note that gynandromorphs have been observed in other species as well, including some crustaceans, other insects and a few bird species. The mutation that causes it in those other species has not been found, either.

Read more at: https://phys.org/news/2018-11-honeybee-gynandromorph-fathers-mother.html#jCp